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Quantum-like evolution laws for observables can be derived from classical Hamiltonian equations 
with the only additional assumption that the phase space is non-commutative. The derivation is 
possible for Hamiltonians that are polynomial functions in position and momentum variables, and 
supports the use of phase space distributions functions in both quantum and classical theories that rely 
on extended states in phase space. 

Key Words: Phase space; Quantum-classical correspondence; Non-commutativity.  

1. INTRODUCTION 

Quantum mechanics is probably the only fundamental theory that is not based on a specific physical 
principle that could (or not) be tested experimentally. It offers only exceptionally successful recipes of 
quantizing the dynamics of physical systems described by known classical Hamiltonians. The recipe itself is 
simple: describe the state of the localized particle by a vector in the Hilbert space (a non-localized 
wavefunction in the Schrödinger formalism) and replace the classical dynamical variables of position x and 
momentum p and any function ),( pxA  by linear operators x̂ , p̂  and Â , respectively, so that the Poisson 
bracket of two functions PBA ],[  transforms into the commutation relation )ˆˆˆˆ(]ˆ,ˆ[ 11 ABBAiBAi −−=− −− . 
In particular, for one-dimensional systems ipx =]ˆ,ˆ[ . This substitution can be consistently applied as 
quantization method if the Hamiltonian of the classical commutative system is at most quadratic in x and p, 
but it holds (if x and p are expressed in Cartesian coordinates and symmetric averages of various possible 
orders are taken) for the quantization of classical wave fields and particles in arbitrary commutative phase 
spaces [1].  

This mathematical procedure obscures the physical differences between quantum and classical 
mechanics embodied in the quantum measurement theory, which implies the “collapse” of the wavefunction 
and forbids the simultaneous precise determination of canonically conjugated variables. Although it is 
commonly accepted that classical mechanics can be recovered from quantum mechanics as the 0→  limit, 
it is less clear how to relate the quantum wavefunction to parameters of an ensemble of classical particles 
and how to derive the Schrödinger equation starting from classical evolution laws (we consider in this paper 
only the non-relativistic case and non-entangled states). This long-standing problem is periodically revived 
and several attempts have been made to solve it. For example, it is possible to define a quantum 
wavefunction-like complex quantity, related to the position probability density of an ensemble of classical 
particles and the corresponding average velocity, which satisfies the Schrödinger equation in certain 
conditions. These conditions include random momentum fluctuations of the classical ensemble that scale 
inversely with the uncertainty in the particle position expressed by the position probability density [2], 
frictionless Brownian motion with a diffusion coefficient m2/  of classical point-like particle of mass m 
[3], or stochastic forces that produce a departure E∆  from the particle’s classical energy, in energy 
conserving trajectories, which can persist for an average time )2/( Et ∆≅∆  [4]. These assumptions 
allegedly explain quantum phenomena, such as the zero-point energy of oscillators, the stability of atoms, the 
slit diffraction, and the tunneling effect starting from models of classical ensembles of particles that are 
highly improbable and not based on experimental observations. Such unconvincing attempts to derive 
quantum behavior from classical mechanics has prompted the identification of the essence of quantum 
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mechanics with the principle of superposition of states [5], although experiments and theory show that 
superpositions of classical fields have the same phase space signature as quantum cat states [6]. 
Alternatively, the difference between quantum and classical physics has been shown to reside in the phase 
space volume occupied by a state [7]. This approach identified Planck’s constant as the phase space 
quantum, i.e. the minimum phase space area of the quantum state projection on each plane spanned by 
conjugate variables, required for the existence of a quantum state, and allowed a phase space formulation of 
the axioms of quantum mechanics that avoids the separation between quantum systems and (classical) 
measuring devices (see also [8]).  

The identification of the element that leads to quantum mechanics from the classical theory of motion 
is still of interest since it is expected to enrich our understanding of quantum phenomena. The aim of this 
paper is to show that the evolution law of quantum observables can be derived from the classical 
Hamiltonian with the unique assumption that the position and momentum variables do not commute. This 
derivation method is inspired by the Feynman’s proof of Maxwell’s equations [9] and strengthens the results 
in [7]. Thus, classical non-commutative phase spaces and quantum states share the same key property of 
nonlocality and a phase space treatment of both cases becomes feasible. 

2. QUANTUM MECHANICS FROM NON-COMMUTATIVE CLASSICAL MECHANICS 

Let us consider for simplicity a one-dimensional classical particle with position x and momentum p, 
subject to a time-independent Hamiltonian H, i.e. to the classical equations of motion 

xHp ∂−∂= / ,         pHx ∂∂= / , (1) 

which moves in a non-commutative phase space, in which  

0],[ =xx ,    0],[ =pp ,    γ=−= pxxppx ],[ . (2) 

Note that in (2) x and p are not considered operators but c-numbers; in this sense (2) are quantum-like 
commutation relations.  

The derivation of the quantum-like evolution laws is much simplified if the Hamiltonian can be 
separated in a kinetic and a potential term, separation that is always possible in the non-relativistic classical 
mechanics for a particle of mass m subject to a force that derives from a potential )(xV . Then, for 

)(2/2 xVmpH += , we have  

mpx /= ,     xVp ∂−∂= / , (3) 

and, after straightforward calculations, it follows from (2) that 

pHmppxmpmpmpxHx ∂∂==+== //],)[2/(2/]2/,[],[ 2 γγγ .  (4) 

The quantum-like evolution law for position in a system with a time-independent Hamiltonian: 

],[/ HxpHixi =∂∂= , (5) 

is then recovered if we put i=γ ; we will comment later on this equality. For now, we keep the γ notation. 
Note that in (5) x and p are still not operators but the position and momentum variables in a non-
commutative phase space. We refer to x and p as observables, since we assume that they can be observed and 
measured similar to the position and momentum variables in commutative classical phase spaces. This 
designation corresponds to the quantum one since x and p satisfy the quantum-like commutation relation (2). 

The evolution law for the momentum observable similar to (5) can be found by employing the Jacobi 
identity  

0]],[,[]],[,[]],[,[ =++ xHpHpxpxH , (6) 

in which the first term in the left-hand side vanishes since ],[ px  is a constant, and by noting that (1) and (2) 
imply  
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]/,[],/[0],[],[ xHxppHpxpx ∂−∂+∂∂==+ . (7) 

By multiplying (7) with −γ  and adding it to (6) one obtains 

[ , ([ , ] / )] [ , ([ , ] / )] 0x p H H x p H x H p+ γ∂ ∂ + + γ∂ ∂ =  (8) 

from which, using (5), it follows that 

/ [ , ]i p H x p H= −γ∂ ∂ = . (9) 

Again, this equation is identical to the corresponding quantum relation if iγ = . In fact, from (8) it only 
results that [ , ] /p H H x+ γ∂ ∂  is constant or a function of x, but this function can be shown to vanish if )(xV  

has certain forms. In particular, if the potential is a polynomial function of x, nxxV α=)( , then  

1 1[ , ] [ , ] ( )n n np H p x px x x xp− −= α = α ⋅ − ⋅ 1 1( n nxp x x− −= α ⋅ − γ )1 xpxn ⋅− −  
2 2 1( 2n nx p x x− −= α ⋅ − γ − 1 1) ...n nx xp n x− −⋅ = = − αγ /H x= −γ∂ ∂ . 

(10) 

Moreover, both equations (5) and (9) are valid for the motion of a particle with charge e in the presence of an 
electromagnetic field with vector and scalar potentials A and ϕ, respectively, at least when these potentials 
are polynomial functions of the spatial coordinate. For the one-dimensional non-relativistic case the 
Hamiltonian in this situation is ),( pxH 2[ ( )] / 2 ( )p eA x m e x= − + ϕ , and the above method of finding the 
quantum evolution laws for x and p outlined above can be easily replicated. These two Hamiltonian forms 
cover the vast majority of situations in non-relativistic physics.   

Equations (5) and (9), which are identical to the evolution laws of quantum observables for time-
independent Hamiltonians, although referring to classical variables in a non-commutative phase space, can 
be generalized to any function of x and p. Using (5) and (9), it is a straightforward task to show that  

( ) / [ , ]k l k ld x p dt x p Hγ = , (11) 

for k, l integers, and that a similar equation is satisfied by any function F of x and p, which does not 
explicitly depend on time: 

( , ) [ , ] /F x p F H= γ . (12) 

After this result is established, an explicit time dependence can be easily accounted for. Note that in 
equations (11) and (12) the order of x and p is important, since they do not commute; for instance 

2d( ) / d d( ) / dx p t xxp t xxp xxp xxp= = + + . For k = l = 1 and a polynomial energy potential, (11) becomes 
2d( ) / d [ , ] ( / )nxp t xp H p m n xγ = = γ − α . 

Since the classical evolution law for any function of x and p is given by the Poisson bracket, (12) 
implies that in a classical non-commutative phase space the Poisson bracket  

)/)(/()/)(/(],[ pFxHpHxFHF P ∂∂∂∂−∂∂∂∂=  (13) 

has to be replaced by [ , ] /F H γ . This result is identical to that in quantum mechanics for iγ = , except that 
no use has been made of the operatorial mathematical formalism. It shows that quantum non-commutativity 
can be replaced by phase space non-commutativity, the non-locality property of physical states being shared 
by the two cases. In fact, this conclusion is not new. It is well known that quantum mechanical formalism is 
equivalent to a phase space treatment in terms of the Wigner distribution function [10], defined on c-number 
variables (see [7, 11–15] for its properties and relations to the standard formulations of quantum mechanics). 
Such a phase-space treatment of quantum mechanics not only allows a re-writing of the known quantum 
mechanical axioms but provides the physical principle that distinguishes quantum mechanics from classical 
mechanics: quantum states have phase space projection areas of at least 2/  on any plane spanned by non-
commuting variables, while classical states are points in phase space. The employment of the Wigner 
distribution function to describe quantum states is perfectly suited for the description of quantum 
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phenomena, including the measurement problem [7,8], as long as the Wigner distribution function is 
interpreted as a quasi-probability distribution in phase space. Negative value regions of this distribution, 
which correspond to dark rays in optics, do not only lead to positive probability values if averaged on the 
phase space area associated to the quantum state, but are necessary for the consistency of the theory since 
they are intimately related to wave-like phenomena such as diffraction and interference [16]. 

3. DISCUSSIONS 

The results obtained in this paper show that the point-like classical particles in commutative phase 
spaces can be replaced in quantum-like theories by extended particles that evolve according to classical laws 
but are localized in finite phase space areas, of / 2γ . This value follows from the identity pxpx ∧=2/],[ , 
where 2/)( pxxppx −=∧  is the outer product of x and p, which equals the oriented area of the parallelogram 
in the non-commutative phase space with sides x and p [17]. Such a result supports and strengthens the phase 
space treatment of quantum mechanics in [7]. 

It should be mentioned that the idea of non-commutative phase spaces in classical physics is not new, 
but encountered in wave mechanics and electromagnetic field theory. This paper only generalizes this idea 
for the classical mechanics of material particles. A similar change in phase space topology, from a point to 
an area equal to / 2 , with / 2= λ π  and λ the optical wavelength, characterizes the transition from ray 
optics to wave optics, for example. Moreover, an operator xip ∂∂−= /ˆ , analogous to the quantum 
mechanical operator xip ∂∂−= /ˆ , can be introduced in wave optics [18]. This operator is canonically 
conjugate to the transverse position in the Hamiltonian sense if the longitudinal spatial coordinate plays the 
role of time in quantum mechanics. In addition, the quantum uncertainty relation is expressed in optics 
through the beam quality factor Q [19].  

The results obtained here are sustained by the demonstration that quantum wavefunction discontinuities 
propagate along classical trajectories in quantum mechanics, in a similar manner as electromagnetic field 
discontinuities propagate along rays in geometrical optics, the classical Hamilton-Jacobi equation 
corresponding to the eikonal equation in optics [20]. It should be noted that the recovery of quantum-like 
evolution law for observables from classical Hamiltonians in a non-commutative phase space demonstrated 
in this paper has a different meaning than the Ehrenfest theorem [21]. One difference is that the position and 
momentum observables in this paper are not average values for an ensemble of particles but refer to a single 
particle. Another one refers to the different mathematical treatment: Ehrenfest showed that the equations of 
motion of the average values of quantum observables are identical with the classical expressions based on 
quantum evolution laws and the non-commutativity of position and momentum operators, whereas here the 
quantum-like evolution laws were recovered starting from the classical Hamiltonian and phase space non-
commutativity, with x and p as c-numbers.  

The full recovery of quantum-like evolution laws in the present approach relies on the identification 
iγ = . The γ parameter should be in agreement with measurements. In fact, experimental tests of quantum 

uncertainty do not measure directly the commutation relations but the Heisenberg uncertainty relations, 
which can be written in the general form as |]ˆ,ˆ[|)2/1( 〉〈≥∆∆ BABA , where the standard deviations are 
defined as 2/122 )ˆˆ( 〉〈−〉〈=∆ XXX , X = A, B, with 〉〈...  the mean value of the observable in the given 
quantum state. In particular, | | / 2 / 2x p i∆ ∆ ≥ =  and from all diffraction experiments for quantum particles 
such as neutrons [22], atoms [23] and fullerenes [24] it only follows that | |γ = . So, iγ =  is not at odds 
with measurement results. It should be emphasized that the mentioned experimental data can be considered 
for the determination of γ since the quantum particles do not obey the classical laws of point particles in 
commutative phase spaces. 

4. CONCLUSIONS 

In this paper a demonstration of the classical-quantum correspondence rule is provided in detail for the 
position and momentum observables, endowing the classical variables with a single new property: that of 
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phase space non-commutativity. This correspondence rule has been demonstrated for Hamiltonians that are 
polynomial functions of x and p of any order, which is important since the quantization method in standard 
quantum mechanics is actually proven only for Hamiltonians of the classical commutative system at most 
quadratic in x and p; this result is known as the Groenwald-van Hove theorem [25]. Although used for 
quantizing classical wave fields and particles in arbitrary commutative phase spaces [1], the replacement rule 

iHFHF P /],[],[ →  produces relevant results, but is not actually demonstrated.  
The quantum-like laws are obtained here without the need to introduce Hilbert spaces, quantum states 

or wavefunctions with debatable meaning. This is possible since classical non-commutative phase space and 
quantum mechanics share the non-locality property. The transition from classical to quantum mechanics is 
similar to the transition from ray optics to wave optics, at least from the point of view of deriving evolution 
equations for observables, and therefore does not need a special mathematical apparatus. More precisely, the 
Hilbert space and the operators and states defined on it in the common formulation of quantum mechanics 
can be replaced as mathematical tools by classical variables in a non-commutative phase space that describes 
extended classical particles. This result supports the use of c-number-defined Wigner distribution functions 
for describing the quantum behavior of extended states in phase space. Since this distribution function can be 
defined for both quantum states and extended classical states (in optics, up to now, and for classical particles, 
in this paper), it becomes possible to develop a common phase space mathematical formalism for both 
quantum and classical theories.  
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