TRANSLATION HYPERSURFACES AND TZITZEICA TRANSLATION HYPERSURFACES OF THE EUCLIDEAN SPACE

Muhittin Evren AYDIN¹, Adela MIHAI²

¹ Firat University, Faculty of Science, Department of Mathematics, Elazig, 23200, Turkey, meaydin@firat.edu.tr
² Technical University of Civil Engineering, Department of Mathematics and Computer Science, Bucharest, 020396, Romania
E-mail: adela_mihai@fmi.unibuc.ro

The determinants of bordered Hessian matrices (also called Allen’s matrices) play important roles in many areas of mathematics and economics. In the present paper, we completely classify the translation hypersurfaces \((M^n, f)\) whose Allen’s matrices of \(f\) are singular in the Euclidean \((n+1)\)-space \(\mathbb{R}^{n+1}\). Also, we obtain that the translation hypersurfaces satisfying the Tzitzeica condition are only hyperplanes in \(\mathbb{R}^{n+1}\). An application of such hypersurfaces to production functions in microeconomics is given.

Key words: Allen’s matrix, translation hypersurface, Tzitzeica hypersurface, production function, Cobb-Douglas production function, perfect substitute.

1. INTRODUCTION

Let \(f : \mathbb{R}^n \to \mathbb{R}, \ f = f(x_1, \ldots, x_n) \) be a twice differentiable function. Then the Hessian matrix \(\mathbf{H}(f) \) is the symmetric square matrix \(\left(f_{x_i x_j} \right) \) of second-order partial derivatives of the function \(f \). The bordered Hessian matrix of the function \(f \) is given by the \((n+1) \times (n+1)\) square matrix

\[
\mathbf{H}^b(f) = \begin{pmatrix}
0 & f_{x_1} & \cdots & f_{x_n} \\
f_{x_1} & f_{x_1 x_1} & \cdots & f_{x_1 x_n} \\
\vdots & \vdots & \ddots & \vdots \\
f_{x_n} & f_{x_n x_1} & \cdots & f_{x_n x_n}
\end{pmatrix},
\]

(1.1)

where \(f_{x_i} = \frac{\partial f}{\partial x_i}, f_{x_i x_j} = \frac{\partial^2 f}{\partial x_i \partial x_j} \) for all \(i, j \in \{1, \ldots, n\} \).

The bordered Hessian matrices of functions have important applications in various areas of mathematics and economics. For instance, the bordered Hessian matrix is used to analyze quasi-convexity of the functions. If the signs of the bordered principal diagonal determinants of the bordered Hessian matrix of a function are alternate (resp. negative), then the function is quasi-concave (resp. quasi-convex). For more detailed properties see [4, 11, 14]. By using the bordered Hessian matrices, elasticity of substitution of production functions in economics can be defined. Explicitly, let \(f = f(x_1, \ldots, x_n) \) be a production function. Then the Allen elasticity of substitution of the \(i^{th} \) production variable with respect to the \(j^{th} \) production variable is given by

\[
A_{ij}(x) = -\frac{x_i f_j + x_j f_i - \ldots + x_n f_n}{x_i x_j \left| \det \mathbf{H}^b(f) \right|}(x = (x_1, \ldots, x_n) \in \mathbb{R}_+^n, i, j \in \{1, \ldots, n\}, i \neq j),
\]
where $\mathbf{H}^B(f)_{ij}$ is the co-factor of the element $f_{x_ix_j}$ in the determinant of $\mathbf{H}^B(f)$ [17]. The authors call the bordered Hessian matrix $\mathbf{H}^B(f)$ by Allen's matrix and $\det \mathbf{H}^B(f)$ by Allen determinant in [2].

On the other hand, it is known that a hypersurface M^n of the $(n+1)$-dimensional Euclidean space \mathbb{R}^{n+1} is called a translation hypersurface if it is the graph of a function of the form:

$$f(x_1,\ldots,x_n) = f_1(x_1) + \cdots + f_n(x_n),$$

where f_1,\ldots,f_n are functions of class C^∞ [15]. We call f_1,\ldots,f_n the components of f, and also denote the translation hypersurface M^n by a pair (M^n, f).

The non-lightlike translation hypersurfaces with constant curvature in (semi)-Euclidean spaces have been classified in [12, 16, 20, 21]. W. Goemans and I. Van de Woestyne [13] proved that every translation lightlike and every homothetical lightlike hypersurface in a semi-Euclidean space is a hyperplane.

A class of surfaces, called Tzitzeica surfaces in \mathbb{R}^3, has important applications both in mathematics and in physics. In the present paper, we give a classification theorem for translation hypersurfaces satisfying Tzitzeica condition and classify the translation hypersurfaces by using Allen's matrices with applications in microeconomics. Throughout this paper, we assume that f_1,\ldots,f_n are real valued functions of class C^∞ and have non-vanishing first derivatives.

2. BASICS ON HYPERSURFACES IN EUCLIDEAN SPACES

Let M^n be a hypersurface of a Euclidean space \mathbb{R}^{n+1}. The Gauss map $\nu : M^n \to S^{n+1}$ maps M^n to the unit hypersphere S^n of \mathbb{R}^{n+1}. The differential $d\nu$ of the Gauss map ν is the shape operator or Weingarten map. Denote by $T_p M^n$ the tangent space of M^n at the point $p \in M^n$. Then, for $v, w \in T_p M^n$, the shape operator A_p at the point $p \in M^n$ is defined by

$$g(A_p(v),w) = g(d\nu(v),w),$$

where g is the induced metric tensor on M^n from the Euclidean metric of \mathbb{R}^{n+1}.

The determinant of the shape operator A_p is called the Gauss-Kronecker curvature. A hypersurface having zero Gauss-Kronecker curvature is said to be developable. In this case the hypersurface can be flattened onto a hyperplane without distortion. We remark that cylinders and cones are examples of developable surfaces, but the spheres are not (under any metric).

For a given function $f = f(x_1,\ldots,x_n)$, the graph of f is the non-parametric hypersurface of \mathbb{R}^{n+1} defined by $\varphi(x) = (x_1,\ldots,x_n,f(x))$, for $x = (x_1,\ldots,x_n) \in \mathbb{R}^n$.

Denote by $\omega = \sqrt{1 + \sum_{i=1}^n (f'_x)^2}$, where $f'_x = \frac{\partial f}{\partial x_i}$. The unit normal vector field of the graph of f is

$$\xi = -\frac{1}{\omega}(f_{x_1},\ldots,f_{x_n},1).$$

The Gauss-Kronecker curvature G of the graph of f is

$$G = \frac{\det(\mathbf{H}(f))}{\omega^{n+2}},$$

where $\mathbf{H}(f)$ is the Hessian matrix of f.

3. PRODUCTION MODELS IN MICROECONOMICS

In microeconomics, a production function is a mathematical expression which denotes the relations between the output generated of a firm, an industry or an economy and inputs that have been used. Explicitly, a production function is a map which has non-vanishing first derivatives defined by
where f is the quantity of output, n are the number of inputs and x_1, x_2, \ldots, x_n are the inputs.

For more detailed properties of production functions \[5, 8, 22\].

A homothetic production function is a production function of the form:

$$f(x_1, \ldots, x_n) = F(h(x_1, \ldots, x_n)),$$

where $h(x_1, \ldots, x_n)$ is homogeneous function of arbitrary given degree and F is a monotonically increasing function. Homothetic functions are production functions whose marginal technical rate of substitution is homogeneous of degree zero (see \[6\] for details).

In 1928, C. W. Cobb and P. H. Douglas introduced in \[8\] a famous two-factor production function $Y = bL^kC^{1-k}$, where b presents the total factor productivity, Y the total production, L the labor input and C the capital input. This function is nowadays called Cobb-Douglas production function. In its generalized form, the Cobb-Douglas production function may be expressed as $f(x) = \gamma x_1^{\alpha_1} \cdots x_n^{\alpha_n}$, where γ is a positive constant and $\alpha_1, \ldots, \alpha_n$ are nonzero constants. A homothetic production function of form $f(x) = F(x_1^{\mu_1} \cdots x_n^{\mu_n})$ is called a homothetic generalized Cobb-Douglas production function \[7\].

4. CLASSIFICATION OF TRANSLATION HYPERSURFACES

A translation hypersurface (M^n, f) in \mathbb{R}^{n+1} is parametrized by

$$\phi(x) = (x_1, \ldots, x_n, f_1(x_1) + \cdots + f_n(x_n)), \quad (4.1)$$

for $x = (x_1, \ldots, x_n) \in \mathbb{R}^n$.

Next result completely classifies the translation hypersurfaces whose the Allen’s matrices of f are singular.

THEOREM 4.1. Let (M^n, f) be a translation hypersurface of \mathbb{R}^{n+1}. Then the Allen’s matrix $H^B(f)$ of f is singular if and only if (M^n, f) is one of the following:

(a) An open part of the $x_1x_2 -$ plane of \mathbb{R}^3, when $n = 2$;
(b) A product manifold $\Gamma \times \mathbb{R}^2$, where Γ is a curve lying in $x_3x_4 -$ plane of \mathbb{R}^4, when $n = 3$;
(c) A product manifold $M^{n-2} \times \mathbb{R}^2$, where M^{n-2} is a translation hypersurface in \mathbb{R}^{n+1}, $n \geq 4$;
(d) A translation hypersurface parametrized by,

$$\phi(x) = \left(x_1, \ldots, x_n, \sum_{i=1}^{n} (\alpha_i \ln(x_i + \beta_i) + \mu_i) \right), \quad n \geq 2,$$

where $\alpha_i, \ i = \overline{1, n},$ are nonzero constans satisfying $\alpha_1 + \cdots + \alpha_n = 0$ and $\beta_i, \mu_i, \ i = \overline{1, n},$ are some constants.

Proof. Let f be a function of class C^∞ given by

$$f(x) = f_1(x_1) + \cdots + f_n(x_n), \quad (4.2)$$

for $x = (x_1, \ldots, x_n) \in \mathbb{R}^{n+1}$. We first need to calculate the determinant of the Allen’s matrix $H^B(f)$. For that, it follows from (4.2) that
\[f_{x_i} = \frac{\partial f}{\partial x_i} = f_i, \quad f_{x_i x_j} = \frac{\partial^2 f}{\partial x_i \partial x_j} = 0, \quad f_{x_i x_i} = \frac{\partial^2 f}{\partial x_i^2} = f_i', \quad i, j \in \{1, \ldots, n\}, i \neq j. \]

From (1.1), the determinant of the Allen's matrix of the function given by (4.2) is

\[
\det(\mathbf{H}^n(f)) = \begin{vmatrix}
0 & f_1 & f_2 & \cdots & f_n \\
\frac{f_1'}{f_n'} & 0 & 0 & \cdots & 0 \\
f_2' & 0 & f_2'' & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
f_n' & 0 & 0 & \cdots & f_n''
\end{vmatrix} = -\sum_{j=1}^{n} f_1'' \cdots f_{j-1}'' \left(f_j'' \right)^2 f_{j+1}'' \cdots f_n''.
\]

On the other hand, let \((M^n, f) \) be a translation hypersurface of \(\mathbb{R}^{n+1} \) parametrized by
\[
\varphi(x) = (x_1, \ldots, x_n, f_1(x_1) + \ldots + f_n(x_n)),
\]
where \(f_1(x_1), \ldots, f_n(x_n) \) are functions of class \(C^\infty \) having nonzero first derivatives. Let us assume that the Allen's matrix \(\mathbf{H}^n(f) \) is singular. Then we have

\[\sum_{j=1}^{n} f_1'' \cdots f_{j-1}'' \left(f_j'' \right)^2 f_{j+1}'' \cdots f_n'' = 0. \] (4.3)

From (4.3), two cases occur:

Case (i): At least one of \(f_1''', \ldots, f_n'''' \) vanishes. Without loss of generality, we may assume that \(f_1''' = 0 \).

Hence from (4.3), we get
\[\left(f_1'' \right)^2 f_2'' \cdots f_n'' = 0. \] (4.4)

Without loss of generality, we may assume from (4.4) that \(f_2''' = 0 \). Thus we have
\[f_i(x_i) = \alpha_1 x_1 + \beta_1, \quad f_2(x_2) = \alpha_2 x_2 + \beta_2. \]
for some constants \(\alpha_1, \alpha_2, \beta_1, \beta_2 \) with \(\alpha_1, \alpha_2 \neq 0 \). Hence \((M^n, f) \) is parametrized by
\[\varphi(x) = (x_1, \ldots, x_n, \alpha_1 x_1 + \alpha_2 x_2 + f_3(x_3) + \ldots + f_n(x_n)), \]
which implies cases (a)–(c).

Case (ii): \(f_1''', \ldots, f_n'''' \) are nonzero. Then from (4.3), by dividing with the product \(f_1'' \cdots f_n'' \), we write
\[\frac{\left(f_1'' \right)^2}{f_1'''} + \ldots + \frac{\left(f_n'' \right)^2}{f_n'''} = 0. \] (4.5)

Taking the partial derivative of (4.5) with respect to \(x_i \), we obtain
\[2 \left(f_i'' \right)^2 = f_i' f_i''', \quad i = 1, \ldots, n. \] (4.6)

By solving (4.6), we find \(f_i = \alpha_i \ln(x_i + \beta_i) + \mu_i \), for some nonzero constants \(\alpha_i \) satisfying \(\alpha_1 + \ldots + \alpha_n = 0 \), because \(\frac{\left(f_i'' \right)^2}{f_i'} = \alpha_i \) and some constants \(\beta_i, \mu_i \) for all \(i \in \{1, \ldots, n\} \). Therefore, we complete first part of the proof.
Conversely, it is straightforward to verify that each of the cases (a)-(d) implies that \(f \) has vanishing Allen determinant.

Theorem 4.1 is a reformulation (in this special case) of a result obtained in [2] by the same authors. As a consequence of Theorem 4.1, we have the following.

Corollary 4.2. Let \((M^n, f) \) be a translation hypersurface in \(\mathbb{R}^{n+1} \) such that all components of \(f \) are non-linear functions. Then the Allen's matrix \(H^\theta(f) \) is singular if and only if, up to suitable translations of \(x_1, \ldots, x_n \), \((M^n, f) \) is the graph hypersurface of the homothetic function given by \(f(x_1, \ldots, x_n) = \ln(x_1^{\alpha_1} \cdots x_n^{\alpha_n}) \), where \(\alpha_1, \ldots, \alpha_n \) are nonzero constants with \(\alpha_1 + \ldots + \alpha_n = 0 \).

5. Tzitzeica Translation Hypersurfaces

Gheorghe Tzitzeica (Romanian mathematician, 1873–1939) introduced a class of curves, nowadays called Tzitzeica curves and a class of surfaces of the Euclidean 3-space, called Tzitzeica surfaces.

A Tzitzeica surface is a spatial surface for which the ratio of its Gaussian curvature \(G \) and the distance \(d \) from the origin to the tangent plane at any arbitrary point of the surface satisfy \(G / d^2 = k \) for a constant \(k \). This class of surface is of great interest, having important applications both in mathematics and in physics [22]. The relation between Tzitzeica curves and surfaces is the following: for a Tzitzeica surface with negative Gaussian curvature, the asymptotic lines are Tzitzeica curves [9, 10]. In [22] was given a necessary and sufficient condition for Cobb-Douglas production hypersurface to be a Tzitzeica hypersurface. A Tzitzeica hypersurface is a hypersurface satisfying

\[
G(x) = k d(x)^{n+2},
\]

where \(G(x) \) denotes the Gauss-Kronocker curvature at a point \(x \), \(d(x) \) is the distance between the origin and the hyperplane tangent to the hypersurface at \(x \) and \(k \) is a real constant. It is known that the simplest Tzitzeica hypersurface is described by the equation \(x_1 \cdots x_n = \frac{1}{x_{n+1}} \).

The following theorem classifies translation hypersurfaces satisfying Tzitzeica condition.

Theorem 5.1. Let \((M^n, f) \) be a translation hypersurface in \(\mathbb{R}^{n+1} \). Then \((M^n, f) \) is a Tzitzeica hypersurface if and only if it is an open part of a hyperplane.

Proof. Let \(D \subset \mathbb{R}^n \) be an open domain, \(n \geq 2 \). Then a translation hypersurface \((M^n, f) \) in \(\mathbb{R}^{n+1} \) is parametrized by

\[
\varphi(x) = (x_1, \ldots, x_n, f_1(x_1) + \ldots + f_n(x_n)),
\]

for \(x = (x_1, \ldots, x_n) \in D \). One can easily see that the unit normal vector \(\xi \) and the Gauss-Kronocker curvature \(G \) are given by

\[
\xi = \frac{1}{\omega} \left(f'_1, \ldots, f'_n, -1 \right)
\]

and

\[
G = \frac{1}{\omega^{n+2}} \prod_{j=1}^{n} f''_j,
\]

where \(f'_j = \frac{df_j}{dx_j}, f''_j = \frac{d^2 f_j}{dx_j^2} \), for all \(j \in \{1, \ldots, n\} \) and \(\omega = \sqrt{1 + \sum_{j=1}^{n} (f'_j)^2} \).

On the other hand the distance between the origin \(O = (0, \ldots, 0) \) and the tangent hyperplane to the hypersurface at \(x = (x_1, \ldots, x_n) \) is
\[d = \frac{1}{\omega} \left| \sum_{j=1}^{n} x_{j} f'_{j} - f_j \right|. \] (5.5)

We distinguish two cases:

Case (i): 0. Assume that \((M^n, f) \) satisfies Tzitzeica condition. Then by (5.1), (5.4) and (5.5),

\[\frac{\Pi_{j=1}^{n} f''_{j}}{\left(\sum_{j=1}^{n} x_{j} f'_{j} - f_j \right)^{n+2}} = k, \] (5.6)

for a real constant \(k \). Taking partial derivative of (5.6) with respect to \(x_j \), we derive

\[f''_{1} \cdots f''_{n} \left(f''_{i} \left(\sum_{j=1}^{n} x_{j} f'_{j} - f_j \right) - (n+2) x_{i} \left(f''_{i} \right)^2 \right) = 0, \]

where \(\wr \) denotes absence of \(i^{th} \) index. For the last equality, since \(G \neq 0 \), we get

\[f_{i} \left(\sum_{j=1}^{n} x_{j} f'_{j} - f_j \right) = (n+2) x_{i} \left(f''_{i} \right)^2. \] (5.7)

In the left-hand side of the equation (5.7), \(\sum_{j=1}^{n} x_{j} f'_{j} - f_j \) is a non-constant function of variables of \(x_1, \ldots, x_i, \ldots, x_n \) since \(f''_{j} \neq 0 \) for all \(j \in \{1, \ldots, n\} - \{i\} \). However the right-hand side is a function of variable \(x_j \). Thus we obtain \(f''_{i} = 0 \) and \(f''_{i} = 0 \) which means that \(f_i \) is linear. This is a contradiction, because \(G \neq 0 \).

Case (ii): \(G = 0 \). Let us assume that \((M^n, f) \) is a Tzitzeica hypersurface. By (5.1), we have

\[d(x) = \left(x_{i} \frac{df_{i}}{dx_{i}} - f_{i} \right) + \cdots + \left(x_{n} \frac{df_{n}}{dx_{n}} - f_{n} \right) = 0, \] (5.8)

where \(x = (x_1, \ldots, x_n) \in D \). Taking the partial derivative of (5.8) with respect of \(x_j \), \(1 \leq j \leq n \), yields

\[x_{j} \frac{d^{2} f_{j}}{dx_{j}^{2}} = 0. \] (5.9)

After solving (5.10), we obtain

\[f_{j} (x_{j}) = \alpha_{j} x_{j} + \beta_{j}, \] (5.10)

where \(\alpha_{j} \) are nonzero constants and \(\beta_{j} \) some constants for all \(j \in \{1, \ldots, n\} \) such that \(\beta_1 + \cdots + \beta_n = 0 \). Combining (5.2) and (5.10) gives that \((M^n, f) \) is an open part of a hyperplane in \(\mathbb{R}^{n+1} \). The converse is easy to verify. It immediately follows from Theorem 5.1.

COROLLARY 5.1. There is no translation hypersurface with \(G \neq 0 \) satisfying Tzitzeica condition in \(\mathbb{R}^{n+1} \).

On the other hand, in economics, goods that are completely substitutable with each other are called perfect substitutes. They may be characterized as goods having a constant marginal rate of substitution. Mathematically, a production function is called a perfect substitute if it is of the form

\[f(x) = \sum_{i=1}^{n} \alpha_{i} x_{i} \]
for some nonzero constants $\alpha_1, \ldots, \alpha_n$.

Thus Theorem 5.1 yields the following application of our study in microeconomics:

THEOREM 5.2. Let $\left(M^n, f \right)$ be a translation hypersurface in \mathbb{R}^{n+1}. Then $\left(M^n, f \right)$ is a Tzitzeica hypersurface if and only if it is the graph hypersurface of a perfect substitute.

ACKNOWLEDGEMENTS

The second author was granted with the "Gheorghe Tzitzeica" Prize of the Romanian Academy in 2014 for the group of papers _Curvature Properties of Complex and Real Metric Manifolds_. Applications, published in 2012. She would like to thank the Romanian Academy for this honor and in particular to Acad. Prof. Dr. Radu Miron, her Ph. D. supervisor, for his continuous encouragement. Her work at this paper was supported by the DAAD Fellowship for University Professors and Researchers A/14/02337 at Technical University Berlin, December 2014-January 2015. She thanks Professor Udo Simon for being her host Professor and his kind hospitality.

REFERENCES

Received January 19, 2015