OPERATORS WHICH COMMUTE WITH THE CONJUGATE CONVOLUTION OPERATIONS

Bahram MOHAMMADZADEH

Babol University of Technology, Department of Mathematics E-mail: b.mohammadzadeh@nit.ac.ir

Abstract. Let G be a locally compact group with a fixed left Haar measure λ . Let $L^\infty(G)$, $L^1(G)$ be the usual Lebesgue spaces with respect to λ . In this paper, we show that there is an isometric homomorphism from $U^\infty(G)^*$ into the set of all bounded linear operators on $L^\infty(G)$ which commute with conjugate convolution, where $U^\infty(G)$ is the subspace of $L^\infty(G)$ consisting of all $f \in L^\infty(G)$ for which the mapping $y \to_{y^{-1}} f_y$ from G into $L^\infty(G)$ is continuous.

Key words: locally compact group, conjugate convolution, isometric homomorphism.

1. INTRODUCTION

Let G be a locally compact group with a fixed left Haar measure λ . Let $L^{\infty}(G)$, $L^{1}(G)$ be the usual Lebesguse spaces with respect to λ as defined in [3]. For each $y \in G$ and $f \in L^{p}(G)$ $(1 \le p \le \infty)$, we define

$$\rho_{y}(f)(x) = f(y^{-1}xy) \quad (x \in G).$$

For every $\varphi, \psi \in L^1(G)$, define the conjugate convolution $R_{\varphi}(\psi)$ by

$$R_{\varphi}(\psi)(x) = \int_{G} \varphi(y) \Delta(y) \psi(y^{-1}xy) dy,$$

Where $x, y \in G$ and Δ is the modular function of G. It is easy to see that for any $\varphi, \psi \in L^1(G)$

$$\int_G R_{\varphi}(\psi)(x) dx = (\int_G \varphi(y) dy) (\int_G \psi(x) dx).$$

This implies that $R_{\varphi}(\psi) \in L^{1}(G)$ and $\|R_{\varphi}(\psi)\|_{1} \leq \|\varphi\|_{1} \|\psi\|_{1}$ for any $\varphi, \psi \in L^{1}(G)$ (see [5]).

Let $\varphi, \psi, \nu \in L^1(G)$. Then we have $R_{\varphi}(R_{\psi}(\nu)) = (R_{(\varphi * \psi)}(\nu))$, where * denotes that convolution multiplication of $L^1(G)$. This implies that $L^1(G)$ with the conjugate convolution is not a Banach algebra.

For each $\varphi \in L^1(G)$ and $f \in L^\infty(G)$, define the complex-valued function $R_{\varphi}(f)$ on G by

$$R_{\varphi}(f)(x) := \int_{G} \varphi(y) f(y^{-1}xy) dy (x \in G).$$

We note that $\|R_{\varphi}(f)\|_{\infty} \le \|f\|_{\infty} \|\varphi\|_{1}$.

A bounded linear operator T on $L^{\infty}(G)$ commutes with conjugate translations if

$$T\left(\rho_{v}\left(f\right)\right) = \rho_{v}\left(T\left(f\right)\right)$$

for all $y \in G$ and $f \in L^{\infty}(G)$. Also, T commutes with conjugate convolution if

$$T\left(R_{\omega}(f)\right) = R_{\omega}\left(T\left(f\right)\right)$$

 $\text{ for all } \varphi \in L^1\big(G \,\big) \text{ and } f \ \in L^{^{\infty}}\big(G \,\big).$

The bounded linear operator on $L^{\infty}(G)$ that commutes with conjugate translations and conjugate convolution have been introduced and studied by A. Gaffari in [1].

In this paper, we show that there is an isometric homomorphism from $U^{\infty}(G)^*$ into the set of all bounded linear operators on $L^{\infty}(G)$ which commute with conjugate convolution.

2. THE RESULTS

We note that $L^1(G)$ with the conjugate convolution operation does not have right bounded approximate identities, in general. Indeed, let G is an abelian group, then for each $\varphi, \psi \in L^1(G)$, we have

$$R_{\varphi}(\psi)(x) = \int_{G} \varphi(y)\psi(y^{-1}xy)dy = \psi(x)\int_{G} \varphi(y)dy$$

and so $L^1(G)$ with the conjugate convolution operation has not a right bounded approximate identity.

Definition 2.1. A net (φ_{α}) in $L^1(G)$ is called a conjugate left bounded approximate identity for $L^1(G)$ if

$$\left\|R_{(\varphi_{\alpha})}(\varphi)-\varphi\right\|_{1}\to 0 \text{ for all } \varphi\in L^{1}(G).$$

THEOREM 2.2. Let G be a locally compact group. Then for any $\varphi \in L^1(G)$ and $\varepsilon > 0$, there is a neighbourhood U of $\varepsilon > 0$ in G such that

$$\|R_{\mu}(\varphi) - \varphi\|_{1} < \varepsilon$$

for all $\mu \in M^+(G)$, such that $\mu(G) = 1$ and $\mu(U^c) = 0$, where $R_{\mu}(\varphi)$ is given by

$$R_{\mu}(\varphi)(x) = \int_{G} \varphi(y^{-1}xy) d\mu(y) \qquad (x \in G).$$

Proof. Let U be a neighbourhood U of e in G such that $\left\| \int_{y^{-1}}^{y} \varphi_y - \varphi \right\|_1 < \frac{\mathcal{E}}{2}$ if $y \in G$ ([3], Theorem 20.4). Then if $g \in C_{00}(G)$ (the set of all bounded continuous functions on G with compact support) and $\mu(U^c) = 0$, the function

$$(x,y) \rightarrow \Big|_{y^{-1}} \varphi_y(x) - \varphi(x) \Big| |g(x)|$$

satisfies the Fubini theorem. Thus we have

$$\int_{G} |R_{\mu}(\varphi)(x) - \varphi(x)| |g(x)| dx = \int_{G} \int_{U} \varphi(y^{-1}xy) d\mu(y) - \int_{U} \varphi(x) d\mu(y) |g(x)| dx
\leq \int_{G} |\varphi(y^{-1}xy) - \varphi(x)| d\mu(y) |g(x)| dx = \int_{U} |\varphi(y^{-1}xy) - \varphi(x)| |g(x)| dx d\mu(y)
\leq \int_{G} |\varphi(y^{-1}xy) - \varphi(x)| d\mu(y) |g(x)| dx.$$

Theorem 12.13 of [3] implies that $||R_{\mu}(\varphi) - \varphi|| < \varepsilon$.

COROLLARY 2.3. Let G be a locally compact group. The group algebra $L^1(G)$ contains a conjugate left bounded approximate identity.

Proof. Let $\mathfrak A$ denote the family of compact neighbourhoods of e and regard $\mathfrak A$ as a directed set in the usual way: $U \geq V$ if $U \subseteq V$. For each $U \in \mathfrak A$ choose a measure $\mu \in M^+(G)$ such that $\mu(U) = 1$ and $\mu(U^c) = 0$. Indeed; we can put $\mu_U := \frac{1_U}{|U|}$, where 1_U is the characteristic function on U. Then $(\mu_U)_{u \in \mathfrak A}$ is a conjugate left bounded approximate identity for $L^1(G)$ by Theorem 2.3.

PROPOSITION 2.4. Let T is a bounded linear operators on $L^{\infty}(G)$ which commute with conjugate convolution. Then T commutes with conjugate translations.

Proof. For every
$$f \in L^{\infty}(G)$$
 and $\varphi, \psi \in L^{1}(G)$, we have
$$\langle f, R_{\varphi}(\psi) \rangle = \int_{G} f(y) R_{\varphi}(\psi)(y) \mathrm{d}y =$$

$$= \int_{G} \int_{G} f(y) \Delta(s) \psi(s^{-1}ys) \varphi(s) \mathrm{d}s \mathrm{d}y =$$

$$= \int_{G} \int_{G} f(sy) \Delta(s) \varphi(s) \psi(ys) \mathrm{d}s \mathrm{d}y =$$

$$= \int_{G} \int_{G} f(sys^{-1}) \Delta(s) \varphi(s) \Delta(s^{-1}) \psi(y) \mathrm{d}s \mathrm{d}y =$$

$$= \int_{G} \int_{G} f(sys^{-1}) \varphi(s) \psi(y) \mathrm{d}s \mathrm{d}y =$$

$$= \int_{G} \int_{G} f(sys^{-1}) \varphi(s) \psi(y) \mathrm{d}s \mathrm{d}y =$$

$$= \int_{G} R_{\varphi}(f)(y) \psi(y) \mathrm{d}y =$$

$$= \langle R_{\varphi}(f), \psi \rangle.$$

Now, let (φ_{α}) be a conjugate left bounded approximate identity for $L^1(G)$. Then for every $y \in G$, $f \in L^{\infty}(G)$ and $\varphi \in L^1(G)$ we have

$$\begin{split} &\langle T(\rho_{y}(f)), \varphi \rangle = \lim \langle T(\rho_{y}(f)), R_{\varphi_{\alpha}}(\varphi) \rangle = \\ &= \lim \langle R_{\varphi_{\alpha}}(T(\rho_{y}(f))), \varphi \rangle = \\ &= \lim \langle T(R_{\varphi_{\alpha}}(\rho_{y}(f))), \varphi \rangle = \\ &= \lim \langle T(R_{\varphi_{\alpha}*\delta_{y}}(f)), \varphi \rangle = \\ &= \lim \langle R_{\varphi_{\alpha}*\delta_{y}}(T(f)), \varphi \rangle = \\ &= \lim \langle R_{\varphi_{\alpha}}(\rho_{y}(T(f))), \varphi \rangle = \\ &= \lim \langle \rho_{y}(T(f)), R_{\varphi_{\alpha}}(\varphi) \rangle = \\ &= \langle \rho_{y}(T(f)), \varphi \rangle. \end{split}$$

That is $T(\rho_{v}(f)) = \rho_{v}(T(f))$.

For each , define $\varphi \in L^1(G)$ a seminorm ρ_{φ} on the space $L^{\infty}(G)$ by

$$\rho_{\varphi}(f) = \|R_{\varphi}(f)\|_{\infty} \quad (f \in L^{\infty}(G)).$$

Note that $P = \left\{ \rho_{\varphi}, \varphi \in L^1(G) \right\}$ separates the points of $L^{\infty} \left(G \right)$. The locally convex topology on $L^{\infty} \left(G \right)$ determined by this seminorm is denoted by τ_c (see, [2]). In Lemma 1.7 in [4] it is shown that $U^{\infty}(G) = R_{L^1(G)}(L^{\infty}(G))$. So for every $m \in U^{\infty}(G)^*$ we can define the operator m_C on $L^{\infty} \left(G \right)$ by

$$\langle m_C(f), \varphi \rangle = \langle m, R_{\varphi}(f) \rangle \quad (f \in L^{\infty}(G), \varphi \in L^1(G)).$$

THEOREM 2.5. Let G be a locally compact group and m be an operator on $L^{\infty}(G)$. Then m_C commute with conjugate convolution.

Proof. First we show that m_C is τ_c -continuous. Let

$$f_{\alpha} \rightarrow f$$

in the τ_c -topology of $L^{\infty}(G)$. By Lemma 3.3 of [2], for each $\varphi \in L^1(G)$,

$$R_{\alpha}(f_{\alpha}) \rightarrow R_{\alpha}(f)$$

in the norm topology. This implies that

$$\lim \langle m_C(f_\alpha), \varphi \rangle = \lim \langle m, R_\alpha(f_\alpha) \rangle = \lim \langle m, R_\alpha(f) \rangle = \langle m_C(f), \varphi \rangle.$$

Hence m_C is τ_c -continuous. Theorem 2.7 from [2] implies that m_C commute with conjugate convolution.

PROPOSITION 2.6. Let G be a locally compact group and T a bounded linear operator on $L^{\infty}(G)$ which commute with conjugate convolution. Then $T(h) \in U^{\infty}(G)$ for any $h \in U^{\infty}(G)$.

Proof. Let $h \in U^{\infty}(G)$, Then $y \to \rho_y(h)$ from G into $L^{\infty}(G)$ is continuous. By Proposition 2.4 we have $\rho_y(T(h)) = T(\rho_y(h))$ for each $y \in G$ and so $T(h) \in U^{\infty}(G)$.

For every $m, n \in U^{\infty}(G)^*$ we define m.n on $U^{\infty}(G)$ by

$$(m.n)(h) = m(n_C(h)) \quad (h \in U^{\infty}(G)).$$

The following Theorem is the main result of this paper.

THEOREM 2.7. Let G be a locally compact group. There exists an isometric homomorphism from $U^{\infty}(G)^*$ into the set of all bounded linear operator on $L^{\infty}(G)$ which commute with conjugate convolution.

Proof. Define Ψ on $U^{\infty}(G)^*$ by

$$\Psi(m) = m_C \quad (m \in U^{\infty}(G)^*).$$

For any $\varphi \in L^1(G)$ with $\|\varphi\|_1 \le 1$ and $f \in L^{\infty}(G)$ we have

$$|\langle m_C(f), \varphi \rangle| = |\langle m, R_{\varphi}(f) \rangle| \le ||m|| ||R_{\varphi}(f)||_{\infty} \le ||m|| ||\varphi||_{1} ||f||_{\infty}.$$

Therefore, $||m_C|| \le ||m||$.

To see that equality holds, let (e_{α}) be a bounded approximate identity for $L^{1}(G)$ bounded by one and $h \in U^{\infty}(G)$. Then there is $\varphi \in L^{1}(G)$ and $f \in L^{\infty}(G)$ such that $h = R_{\varphi}(f)$. This implies that

$$\left\|R_{e_{\alpha}}(h)-h\right\|_{\infty} = \left\|R_{e_{\alpha}}(R_{\varphi}(f))-R_{\varphi}(f)\right\|_{\infty} = \left\|R_{e_{\alpha}*\varphi}(f)-R_{\varphi}(f)\right\|_{\infty} \leq \left\|e_{\alpha}*\varphi-\varphi\right\|_{1}\left\|f\right\|_{\infty} \to 0.$$

Hence

$$||m_C(h)|| \ge |\langle m_C(h), e_\alpha \rangle| = |\langle m, R_{e_\alpha}(h) \rangle|$$

which converges to $|\langle m, h \rangle|$. Hence $||m_C|| \ge ||m||$ and so Ψ is an isometry.

Now, let $m, n \in U^{\infty}(G)^*$, we claim that $(m,n)_C = m_C(n_C)$. For any $\varphi \in L^1(G)$ and $f \in L^{\infty}(G)$,

$$\langle (m.n)_{C}(f), \varphi \rangle = \langle (m.n), R_{\varphi}(f) \rangle = \langle m, n_{C}(R_{\varphi}(f)) \rangle = \langle m, R_{\varphi}(n_{C}(f)) \rangle = \langle m_{C}(n_{C}(f)), \varphi \rangle$$
$$= \langle (m_{C}(n_{C}))(f), \varphi \rangle$$

That is, $(m.n)_C = m_C(n_C)$. This implies that Ψ is homomorphism.

Remark 2.8. We believe, but have been unable to prove, that the isometry of the final theorem is surjective.

REFERENCES

- 1. A. Ghaffari, Operators which commute with the conjugation operators, Hoston J. Math., 34, pp. 1225–1232, 2008.
- 2. A. Ghaffari, Conjugate convolution operators and inner amenability, Bull, Belg. Math. Soc. Simon Stivin, 18, 1–11, 2011.
- 3. E. Hewitt and K. A. Ross., Abstract harmonic analysis I, Berlin, Springer-Verlag, 1979.
- 4. R. Stokke., Quasi-central bounded approximate identities in group algebras of locally compact groups, Illinois J. Math., 48, pp. 151–170, 2004.
- 5. C. K. Yuan, Conjugate convolution and inner invariant mean, J. Math. Anal. Appl., 157, pp. 166–176, 1991.

Received July 2, 2012