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Abstract. In this study, we introduce deferred statistical convergence and strongly deferred Cesàro summability
on an arbitrary time scale. Moreover, we examine some relationship between deferred statistical convergence
and strongly deferred Cesàro summability on time scales.
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1. INTRODUCTION

Convergence is one of the most important concepts in mathematics. It is of strong theoretical importance
in many fields. In applied fields, this concept is indispensable. For this reason, different types of convergence
have been introduced over the years and important results and concepts have emerged. One of these concepts is
statistical convergence. The thought of statistical convergence was given by Zygmund [29] in 1935. Statistical
convergence was introduced by Steinhaus [24] and Fast [11] and reintroduced by Schoenberg [21] indepen-
dently. In following years and under diverse names, it has been discussed Fourier analysis, Ergodic, Number,
Turnpike and Measure theories, Trigonometric series, Banach spaces. In the next process, it was further inves-
tigated from the sequence space point of view and linked with summability theory by Altın et al. [2], Cinar et
al. ( [7], [10]), Connor [8], Denjoy [9], Fridy [12], Işık and Akbaş [3, 15], Küçükaslan and Yılmaztürk [17],
Nuray [18], Salat [20] and many others. The relationship between statistical convergence and classical summa-
bility continued to be studied for many years. First, let’s remind statistical convergence in the classical sense.

Statistical convergence depends upon density of subsets of N. The density of E⊂ N is defined by

δ (E) = lim
n→∞

1
n

n

∑
k=1

χE(k),

provided that limit exists. Here, χE is characteristic function of E. It is obvious that any finite subset of N has
zero natural density and

δ (Ec) = 1−δ (E) .

x = (xk)k∈N is said to be statistically convergent to L if

δ ({k ∈ N : |xk−L|= ε}) = 0,

for each ε > 0. One can write xk
stat−→ L as k→ ∞ or S− lim

k→∞

xk = L. This definition has been expressed in

different ways over the years and its relationship with aggregation has been examined in some areas. In recent
years, relationship between statistical convergence and summability theory has been tried to be carried into
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applied fields. Now, it is time to remember deferred Cesàro mean and deferred statistical convergence, which
are the basic concepts of our study.

Agnew [1] introduced deferred Cesàro mean of real or complex valued sequences x = (xk) in 1932 as

(Dp,qx)n =
1

(qn− pn)

qn

∑
k=pn+1

xk, n = 1,2,3, . . . ,

where p = (pn) and q = (qn) are the sequences of non-negative integers satisfying

pn < qn and lim
n→∞

qn = ∞. (1)

Let K ⊂ N and Kp,q (n) = {k : pn < k ≤ qn,k ∈ K}. Deferred density of K is defined by

δp,q (K) = lim
n→∞

1
(qn− pn)

∣∣Kp,q (n)
∣∣ ,

when the right side limit exists. The vertical bars indicate the cardinality of Kp,q (n) . If qn = n, pn = 0, deferred
density coincides with natural density of K.

x = (xk) is said to be deferred statistically convergent to L, if

lim
n→∞

1
(qn− pn)

|{pn < k ≤ qn : |xk−L| ≥ ε}|= 0,

for each ε > 0 [16]. Here, one can write Sp,q− limxk = L. If qn = n, pn = 0, deferred statistical convergence
coincides with usual statistical convergence [17]. This type of convergence includes many convergences at
the same time and it is possible to switch to other convergences depending on the change of p and q. Here,
the intersection process of time scale and summability theories and the work done in this field will be briefly
mentioned.

The time scale theory was given by Hilger in 1988 [14]. The details of the time scale theory were first
given in detail by [5] in 2001. This study accelerated the studies on time scale theory. Later, Guseinov [13] was
constructed measure theory on time scales in 2003. Lebesque ∆−integral introduced by Cabada and Vivero [6]
in 2006 on time scales. These studies are the basis for the studies on summability theory on time scales.
Over the years, the time scale calculus has been studied by many mathematicians in different fields [4]. So,
in view of recent applications of time scales for real life problems, it seems usual to generalize convergence
on time scales. Statistical convergence is applied to time scales for different aims by numerous authors in
literature (see [22,23,25–28] ). Here, our purpose is to move some concepts and properties on deferred statistical
convergence to time scale theory. Before moving on to the main topic, let’s remember some important concepts
related to time scale theory.

A time scale T is an arbitrary, nonempty, closed subset of real numbers. For t ∈ T, forward and back-
ward jump operators σ ,ρ : T→ T are defined by σ (t) = inf{s ∈ T : s > t} and ρ (t) = sup{s ∈ T : s < t} ,
respectively. A closed interval on T is defined [a,b]T = {t ∈ T : a≤ t ≤ b} . Now, let B denote the family of
[a,b)T ∈ T and m : B→ [0,∞) be the set function on B where m([a,b)T) = b− a. Then, it is known that m
is a countably additive measure on B. Caratheodory extension of m associated with B is said to be Lebesque
∆−measure on T and is denoted by µ∆ (see [6], [19]). The properties of ∆−measure [13] are as follows;

i) If a ∈ T\ max{T} , then single point set {a} is ∆−measurable and its ∆−measure is µ∆ (a) = σ (a)−a,
ii) If a,b ∈ T and a≤ b, then µ∆ ([a,b)T) = b−a and µ∆ ((a,b)T) = b−σ (a) ,
iii) If a,b ∈ T\ max{T} and a≤ b, then µ∆ ((a,b]T) = σ (b)−σ (a) and µ∆ ([a,b]T) = σ (b)−a.

These important features will be used effectively throughout the study. These definitions and properties are of
vital importance for the study of statistical convergence on time scales and its relation to summability in this
field. ∆−measurement and all its features are extremely important in terms of the accuracy of the results to be
obtained.
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2. DEFERRED STATISTICAL CONVERGENCE ON TIME SCALES

In this section, deferred statistical convergence and strongly deferred Cesàro summability are defined and
their basic principles are established on an arbitrary time scale. In the following theorems and definitions, (pn)
and (qn) will be assumed to be sequences of non-negative integers satisfying (1) up to Theorem 5.

Definition 1. Let f : T→ R be ∆-measurable. f is deferred statistically convergent on T to a number L if

lim
n→∞

µ∆{s ∈ (pn,qn]T : | f (s)−L|> ε}
µ∆ ((pn,qn]T)

= 0,

for each ε > 0. We can write DST[p,q]− lim
t→∞

f (t) = L.

Throughout this study, set of all deferred statistically convergent functions on T will be indicated by DST[p,q].
Additionally, it is clear that:

i) If q(t) = t, p(t) = t0 then we get statistical convergence on T [25],
ii) If qn = kn, pn = kn−1, where (kn) is a lacunary sequence, then we get lacunary statistical convergence on

T [26],
iii) If qt = t, pt = t−λt + t0, then we get λ−statistical convergence on T [27].
These situations clearly show the importance of our study. Significant types of statistical convergence in

the current classical situation are thus generalized using the time scale.

THEOREM 1. Let us consider f ,g : T→R with DST[p,q]− lim
t→∞

f (t) = L1 and DST[p,q]− lim
t→∞

g(t) = L2. Then,
the below statements hold:

i) DST[p,q]− lim
t→∞

(
f (t)+g(t)

)
= L1 +L2,

ii) DST[p,q]− lim
t→∞

(
c f (t)

)
= cL1,c ∈ R.

Proof. Omitted.

Definition 2. Let f : T→ R be ∆-measurable. Then, f is strongly deferred Cesàro summable to L if

lim
n→∞

1
µ∆

(
(pn,qn]T

) ∫
(pn,qn]T

| f (s)−L|∆s = 0.

Here, we write DWT
[p,q]− lim

t→∞
f (t) = L. DWT

[p,q] denotes set of all deferred Cesàro summable functions on T.

THEOREM 2. Let f : T→ R be ∆-measurable. If f ∈ DWT
[p,q], then f ∈ DST[p,q].

Proof. Suppose that DWT
[p,q]− lim

t→∞
f (t) = L. For every ε > 0, it yields that

∫
(pn,qn]T

| f (s)−L|∆s >
∫
{s∈(pn,qn]T:| f (s)−L|>ε}

| f (s)−L|∆s

> ε µ∆{{s ∈ (pn,qn]T : | f (s)−L|> ε}}.

THEOREM 3. Let f : T→ R be ∆-measurable. If f ∈ DST[p,q] and f is bounded, then f ∈ DWT
[p,q].

Proof. Assume that f is bounded and deferred statistical convergent to L on T. Then, there exists a number
K > 0 such that | f (s)−L|6 K and

lim
n→∞

1
µ∆

(
pn,qn]

)µ∆

(
{s ∈ (pn,qn] : | f (s)−L|> ε}

)
= 0.
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Therefore, we have

1
µ∆((pn,qn])

∫
(pn,qn]T

| f (s)−L|∆s =
1

µ∆((pn,qn])

∫
{(pn,qn]T:| f (s)−L|>ε}

| f (s)−L|∆s +

+
1

µ∆((pn,qn])

∫
{(pn,qn]T:| f (s)−L|<ε}

| f (s)−L|∆s 6

6
K

µ∆((pn,qn])

∫
(pn,qn]T:| f (s)−L|>ε}

∆s+
ε

µ∆((pn,qn])

∫
[pn,qn]T

∆s =

=
K µ∆

(
{s ∈ (pn,qn]T : | f (s)−L|> ε}

)
µ∆

(
(pn,qn]

) + ε.

It completes the proof as n→ ∞.

THEOREM 4. Let f : T→R be ∆-measurable, and
µ∆

(
(pn,qn]

)
σ(qn)

be bounded. If f is statistical convergent

to L on T, then f is deferred statistical convergent to L on T.

Proof. Since f is statistical convergent to L on T, we can write

1
µ∆

(
(t0,qn]

)µ∆

(
{s ∈ (t0,qn]T : | f (s)−L|> ε}

)
>

µ∆

(
{s ∈ (pn,qn]T : | f (s)−L|> ε}

)
σ(qn)− t0

>
σ(qn)−σ(pn)

σ(qn)

µ∆

(
{s ∈ (pn,qn]T : | f (s)−L|> ε}

)
σ(qn)−σ(pn)

If we take limit as n→ ∞, then the theorem is proved.

COROLLARY 1. Let f : T → R be ∆-measurable, (qn) be an arbitrary sequence with qn ∈ [t0, t] and
µ∆

(
[t0, t]

)
µ∆ ((pn,qn])

be bounded. If f is statistical convergent to L on T, then f is deferred statistical convergent to L

on T.

THEOREM 5. Let pn,qn, p
′
n and q

′
n be sequences of non-negative integers satisfying

pn ≤ p
′
n < q

′
n ≤ qn (2)

for all n ∈ N such that

lim
n→∞

µ∆

(
(pn,qn]

)
µ∆

(
(p′n,q

′
n]
) = a > 0. (3)

Then, f ∈ DST[p,q] implies f ∈ DST[p′,q′].

Proof. Assume that DST[p,q]− lim
t→∞

f (t) = L. Since (2) is provided, we have

{s ∈ (p
′
n,q

′
n] : | f (s)−L|> ε} ⊂ {s ∈ (pn,qn] : | f (s)−L|> ε},

for given ε > 0 and also the following inequality:

1
µ∆

(
(p′n,q

′
n]
)µ∆

(
{s ∈ (p

′
n,q

′
n] : | f (s)−L|> ε}

)
6

1
µ∆

(
(p′n,q

′
n]
)µ∆

(
{s ∈ (pn,qn] : | f (s)−L|> ε}

)
6

6
µ∆

(
(pn,qn]

)
µ∆

(
(p′n,q

′
n]
) 1

µ∆

(
(pn,qn]

)µ∆

(
{s ∈ (pn,qn] : | f (s)−L|> ε}

)
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Taking limit as n→ ∞ and using (3), we get DST[p′,q′]− lim
t→∞

f (t) = L.

THEOREM 6. Let pn,qn, p
′
n and q

′
n be sequences of non-negative integers satisfying (2) such that

lim
n→∞

µ∆

(
(pn, p

′
n]
)

µ∆

(
(p′n,q

′
n]
) = 0, lim

n→∞

µ∆

(
(q
′
n,qn]

)
µ∆

(
(p′n,q

′
n]
) = 0. (4)

If f is bounded, f ∈ DST[p′,q′] implies f ∈ DWT
[p,q].

Proof. Suppose that DST[p′,q′]− lim
t→∞

f (t) = L and f is bounded. Since f is bounded, there exists a number

M > 0 such that | f (s)−L|6 M. Then, we may write

1
µ∆((pn,qn])

∫
[pn,qn]T

| f (s)−L|∆s

=
1

µ∆((pn,qn])

[ ∫
[pn,p

′
n]T

| f (s)−L|∆s+
∫

[p′n,q
′
n]T

| f (s)−L|∆s+
∫

[q′n,qn]T

| f (s)−L|∆s
]

6
1

µ∆((p′n,q
′
n])

[ ∫
[pn,p

′
n]T

| f (s)−L|∆s+
∫

[p′n,q
′
n]T

| f (s)−L|∆s+
∫

[q′n,qn]T

| f (s)−L|∆s
]

6
M

µ∆((p′n,q
′
n])

(σ(p
′
n)−σ(pn)+(σ(qn)−σ(q

′
n)

+
1

µ∆((p′n,q
′
n])

[ ∫
{[pn,qn]:| f (s)−L|>ε}

| f (s)−L|∆s+
∫

{[pn,qn]:| f (s)−L|<ε}

| f (s)−L|∆s
]

6
µ∆((pn, p′n])+µ∆((q′n,qn])

µ∆((p′n,q
′
n])

M

+
M

µ∆((p′n,q
′
n])

µ∆({p′n < k 6 q′n : | f (s)−L|> ε})+ ε

µ∆((p′n,q
′
n])

Taking limit as n→ ∞ and using (4), we get DWT
[p′,q′]− lim

t→∞
f (t) = L.

3. CONCLUSION

The basic thought of statistical convergence of a sequence is that majority of its terms converges and we do
not care what is going on with other terms. Statistical convergence is directly related to convergence of such
statistical characteristics as mean and standard deviation. Therewithal, it is known that sequences that come
from measurement and computation, do not allow, in a general case, to test whether they converge or statistically
converge in the strict mathematical sense. Over the years, different versions of statistical convergence have
been examined and very important results have been obtained. One of these versions is deferred statistical
convergence. In this study, this variant of statistical convergence is examined on arbitrary time scales and an
important generalization is made. The present results thus become a special case of our results. Then, strongly
deferred Cesàro summability is constructed on time scales. Finally, some inclusion relations are studied for the
new obtained spaces. As the time scale differs, the definitions and theorems discussed will change. In many
ways, this will make a difference to applications involving the theory of summability.
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