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Abstract. We give a new proof of the multivariate CLT in the c-free probability theory due to  

M. Bożejko and R. Speicher [4,3], by extending a combinatorial method exposed by F. Hiai and D. 

Petz [7](univariate case) or A. Nica and R. Speicher [11] (uni- and multivariate case) for CLT in the 

frame of D.-V. Voiculescu’s free probability theory [15–17].  
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1. INTRODUCTION 

Through his investigations on the free group 1  type factors in the theory of von Neumann algebras, 

D.-V. Voiculescu created the free probability theory (see, e.g. [15−17] for more information): a quantum 

probability theory (see, e.g., [6] as an introduction into this field) for ”highly” non-commutative random 

variables, based on free independence (: freeness) as central concept, interpreted as an analogue of the 

stochastic independence from the classical probability theory. He proved [15] a CLT for freely independent 

random variables with the famous Wigner’s semi-circular law as limit distribution; this key result guided him 

to reveal a deep connexion with the random matrix theory, transforming then the free probability theory in an 

expansive and important domain of research with spectacular applications in many fields (see, e.g., [16, 17], 

but also [7, 11], and the rich bibliography therein). R. Speicher [13] gave a more algebraic proof of 

Voiculescu’s free CLT in W.von Waldenfels’ style and discovered the combinatorial structure of freeness 

based on non-crossing partitions; then, he [14] and A. Nica developed the combinatorial facet of free 

probability (see, e.g., the monograph [11], and the references therein). 

Due to M. Bożejko’s previous work on Haagerup type functions on free groups, Bożejko and Speicher 

[4] introduced a generalization of freeness with respect to two states (: c-freeness), proving a CLT in this 

frame for identically distributed random variables, with a so-called free Meixner distribution (see, e.g., [1]) 

as limit. The structure of c-freeness is governed by the non-crossing partitions, but it must distinguish 

between outer and inner blocks, as they revealed. Thus, they initiated the c-free probability theory, a new and 

dynamic research topic (see, e.g., [4, 3], the recent [2], and the references therein). 

In this Note, we prove the multivariate CLT for ,  -free random variables in Bożejko-Speicher 

theory, by extending the combinatorial moment method presented in [7] or [11] for the free CLT; but, we 

focus on the occurrence of the interval blocks in the partition associated now to a product of  -centered 

,  -free random variables. Alternatively, by cumulants, the proof is shorter. Other limit theorems can be 

proved. We will detail these elsewhere. 

2. PRELIMINARIES 

We recall some well-known general information as in, e.g., [4, 11,  14]. (We abbreviate ‘such that’ by 

‘s.t.’, and ‘with respect to’ by ’w.r.t’). If S  is a finite totally ordered set, we denote by ( )P S  the partitions of 

S  and by 1,2 ( )P S  the partitions in ( )P S  for which every block has at most two elements; calling blocks the 



318 Valentin IONESCU 2 

non-empty subsets defining a partition (in general). We call pairing a partition in which every block has 

exactly two elements. For ,k l S , denote by ~k l  the fact that k  and l  belong to the same block of 

( )P S . Remind that a partition   is called non-crossing if there are no 1 1 2 2k l k l    in S  s.t. 

1 2~k k  1 2~l l ; otherwise,   is crossing. When   is non-crossing, and V  is a block of  , say V  is 

inner, if there exist another block W  of  , and ,k l W , s.t. k v l  , for all v V ; otherwise, say V  is 

outer. Denote by ( )  , and ( )   the inner, and, respectively, outer blocks of  . Denote by 2 ( )P S , and 

2 ( )NC S  the pairings, and, respectively, non-crossing pairings of S . When S  has m  elements, abbreviate 

the above sets by ( )P m , 1,2 ( )P m , 2 ( )P m , and 2 ( )NC m , respectively ( 2 ( )P m  is empty if m  is odd). Remind 

that each non-crossing partition of  1,...,m  has at least an interval; i.e., a block of consecutive indices which 

may be a singleton (:block having a single element). The cardinality of 2 (2 )P p  or 2 (2 )NC p  equals the 

corresponding moment of a standard Gauss, respectively, semi-circular Wigner distribution; i.e. (2 )!!p , 

respectively the Catalan number : (2 )! !( 1)!pc p p p= + . If S  is a disjoint union of non-void subsets iS , and 

( )NC S  s.t.  = i , with some ( )i iNC S  , we write  = i . 

We consider a *- algebra as a (complex) associative algebra with an involution * (i.e. a conjugate 

linear anti-automorphism). A linear functional   of a *- algebra A  is positive if ( ) 0a a  , for all a A . 

Let A  be unital (complex) (*-) algebra, and  ,  be unital linear (positive) functionals of A . We interpret 

( , )A   or ( , , )A    as quantum (*-) probability spaces, and the elements of A  as quantum random variables 

in view of [16, 11]. Let I  be an index set and ,i i I     be the unital (*-) algebra freely generated by the 

complex field  and the non-commuting indeterminates , .i i I   Let ( )i i Ia a =  be such a random vector 

with all (self-adjoint) ia A . The non-commutative joint distribution of a  w.r.t.   is :a a =   , where :a  

,i i I A   →  is the unique unital (*-) homomorphism s.t. ( )a i ia  = . The scalars 
1

( ... )
ji ia a  are 

viewed as the joint moments of a  w.r.t.  . 

If ( )i
N N i Ia a =  and ( )i i Ia a = are random vectors in some quantum  probability spaces ( , )N NA  and 

( , )A  , we say ( )N Na  converges in distribution to a , denoting distr
Na a⎯⎯⎯→ , if for all 1j  , and all 

1,..., ji i I , 1

1
lim ( ... ) ( ... )j

j

ii
N N N i i

N
a a a a

→
 = . When a A  and ( ) 0a = , say a  is centered w.r.t.   or  -

centered. For a A  (but, generally, ( ) 0a  ), we center a  w.r.t.  , if we decompose ( ) 1a a a=  +  via 

the centering : ( ) 1a a a= −   of a  w.r.t.   (see, e.g., [11, Notation 5.14]); 1  being here the unit of A . 

When (1 ) iA A  , i I  are unital subalgebras, then every random variable 1 nw a a A=   , s.t. all 

kk ia A , for 1,..., ni i I , determines a unique partition   on  1,...,n  by ~ k lk l i i  = ; and we call this the 

partition associated  to w . We shall say w  is crossing or non-crossing when this partition is crossing or non-

crossing. We say 1 nw a a A=   , with 
kk ia A , as before, is a simple random variable in ( , , )A    if w  is 

reduced (i.e., 1 2 ... ni i i   ), calling n the length of w, and every ka  is  -centered, when 1 1k n  − . If 

2 nw a a A=    is a simple random variable, and 1a w A  is reduced, we say 1a w  is a quasi-simple random 

variable in ( , , )A   . 

The next definition concerning the notion of  , -free independence (:  , -freeness) comes from 

[4,3,8-10](see also [2]). 

Definition. Let ( , , )A    be a quantum probability space as above, and (1 ) iA A  , i I  be unital 

subalgebras. The family ( )i i IA   is  , -freely independent (or  , -free, for short), if 

1 1( ) ( ) ( )n na a a a  =   , for any 2n  , all 
kk ia A , and all 1,..., ni i I  s.t. 1 na a  is a simple random 

variable in ( , , )A   . If iA S , i I  are subsets, then ( )i i IS  is  , -freely independent, if ( )i i IA  is  , 

 -freely independent, iA  being the unital subalgebra of A  generated by iS .  
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In particular, the  , -freeness is Voiculescu’s freeness w.r.t.   (according to [16, 17, 6, 7, 11, 13]). 

The c-freeness w.r.t. ( , ), introduced in [3], involves both freeness w.r.t.  , and  , -freeness. 

3. JOINT MOMENTS OF  ,-FREE QUANTUM RANDOM VARIABLES 

Let in this section ( , , )A    be a quantum probability space as before, and (1 ) iA A  , i I  be a 

family of  , -freely independent unital subalgebras of A . Thus, ( )i i IA  is weakly independent in ( , )A  in 

the sense of [5, 8]; the weak-independence having the meaning below. 

Definition 3.1. Let ( , )B   be a quantum probability space and (1 ) iB B  , i I  be unital subalgebras. 

The family ( )i i IB   is weakly independent if 1( ... )nx x = 1 1( ... ) ( ... )p p nx x x x+  , for all n > 1p  , all ji I , all 

j i j
x B , s.t. the sets  1,..., pi i  and  1,...,p ni i+ are disjoint. If iB S , i I  are subsets, then ( )i i IS  is weakly 

independent, if ( )i i IB   is weakly independent; iB  being  the unital subalgebra of B  generated by iS .  

For 1 nw a a A=    s.t. every j i j
a A , we say w  has a singleton ka  when j ki i , for any j k . 

In the next statement, the ja , for j k  are arbitrary. 

LEMMA 3.2. Let 1 nw a a A=   , s.t. every 
jj ia A , and w has a singleton ka  which is centered w.r.t. 

,  . Then ( ) 0w = . 

Proof. It suffices to suppose w  is reduced. If  1,k n , the assertion follows by the weak-

independence and the centeredness of ka . Thus, it remains to consider 2 1k n  − . For 3n = , we get 

1 3( )ka a a = 1 3( ) ( ) ( )ka a a   = 0, by ,  -freeness and the centeredness of ka . Then supposing the 

statement true for any 1 ra a A   of length r n , check it for 1 nw a a A=   , as follows. Center ja  w.r.t. 

 , for every 1 2n j−   , using : ( )j jb a= , : 1j j ja a b= −  , to get, via the induction hypothesis: 

1( )k na a a   = 1 1 2( )n k n nb a a a a− −   + 1 1( )k n na a a a−   1 1( )k n na a a a−=   = ... = 

       = 1 2 1( )k k na a a a a+   =…= 1 2 1( )k n na a a a a−   = 1 2 1( ) ( ) ( ) ( ) ( ) 0k n na a a a a−     = ; 

finally using again the ,  -freeness property and the centeredness of ka .  

Remark 3.3. If 1 nw a a A=   , s.t. every 
jj ia A , is a quasi-simple random variable in ( , , )A   , and 

( ) 0na = , then ( ) 0w = .  

We illustrate the next statement by the following partitions j  in 1,2 ( )P m  associated to 1 1m ma xc a w− = . 

Examples 3.4. 

1) If 5m = , let  1 (1,5),(2,3),(4) =  (non-crossing). Its interval gives 
22 3 1: ia a c A=  . Thus, 

1 4 5 1 1 4 5w a xc a a c c a= =  as reduced word, with 1:x c= . So, center 1c  w.r.t.  , denoting 1 :b = 1( )c , and 

1c 1 1: 1c b= −  , to get 1 1 4 5 1 1 4 5w b a c a a c c a= + , a sum of quasi-simple random variables. 

2) If 7m = , let  2 (1,5),(2,7),(3,4),(6) =  (crossing), and  3 (1,7),(2,3),(4,5),(6) =  (non-crossing). 

The intervals give: 
33 4 1: ia a c A=  , for 2 ; but, 

22 3 2: ia a c A=   and 
44 5 1: ia a c A=  , for 3 . Express w  in 

reduced form as 1 6 7 1 1 1 6 7w a xc a a uc v c a= = , for 2  (with 1 1:x uc v= , where 2 :a u= , and 5 1:a v= ), but 

1 6 7 1 2 1 6 7w a xc a a c c c a= = , for 3 . Then center 1c  w.r.t.  , with 1 :b = 1( )c , and 1c := 1 1 1c b−  , for 2 , but 

center 1c  and 2c  w.r.t.  , for 3 , with :jb = ( )jc , and jc := 1j jc b−  , to get 1 1 1 6 7 1 1 1 6 7w b a uv c a a uc v c a= + , 

and, respectively, 1 1 2 6 7 1 2 1 6 7w b a c c a a c c c a= + 1 1 2 6 7b a c c a= + 2 1 1 6 7b a c c a + 1 2 1 6 7a c c c a , sums of quasi-simple 

random variables; in view of the example before. 
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Hence ( ) 0w = , in any of these examples, by the Remark 3.3.  

LEMMA 3.5. Let 1 1m mw a xc a A−=  , s.t.: 
11 ia A , 

mm ia A ; x  is void or any product of 
jj ia A  with 

( ) 0ja = ; 
11 mm ic A
−−   is  -centered singleton in w ; ( ) 0ma = ; and the partition associated to 1 ma xa  is a 

pairing. Then ( ) 0w = , whenever 1 ma xa  is crossing, or 1 mi i=  and x  is non-crossing or void.  

The proof of the previous Lemma is similar to the next proof and we omit it, because of the page 

limitation. 

LEMMA 3.6. Let 1 r mw a xc ya A=  , s.t.: 
11 ia A , 

mm ia A ; x  is void or any  product of 
jj ia A  with 

( ) 0ja = ; 
rr ic A  is  -centered singleton in w; mya  is a simple random variable; ( ) 0ma = ; and the 

partition associated to 1 ma xya  is a pairing. Then ( ) 0w = , whenever 1 ma xya  is crossing, or 1 mi i=  and xy  

is non-crossing. 

Proof. In view of the weak-independence and the Remark 3.3, it suffices to consider the partition 

associated to w has at least an interval ( , 1)l l + , 1l  , and 5m  . Thus, for 7m = , only the next cases are, for 

the partition in 1,2 (7)P  associated to 1 r ma xc ya w= ; namely, 

 1 (1,6),(2,3),(4),(5,7) = ,  2 (1,6),(2,3),(4,7),(5) = ,  3 (1,6),(2,7),(3,4),(5) = , and 

 1 (1,7),(2,6),(3,4),(5) = ,  2 (1,7),(2,3),(4,6),(5) = ; which are crossing, respectively, non-

crossing. Denote 
22 3 1: ia a c A=  , for 1 , 2 , and 2 , and 

33 4 1: ia a c A=  , for 3  and 1 . Denote by 4c  and 

5c  the singleton for 1 , and, respectively, for the other cases. Then, we may express w  in reduced form as 

1 4 7w a xc ya= , for 1 , and 1 5 7w a xc ya= , in rest, where: 1:x c= , for 1 ; 1 1:x c v= , with 4 1:a v= , for 2  and 2 ; 

1:x uc= , with 2 :a u= , for 3  and 1 . Center 1c  w.r.t.  ; always get w  as a sum of quasi-simple random 

variables. Therefore, ( ) 0w = , by the Remark 3.3. 

Letting 7m  , suppose the assertion true for any word 1 r pa xc ya  s.t. the partition associated to 1 pa xya  

belongs to 2 ( 1)P p −  with p m , and check it for m . Consider 1 r mw a xc ya=  and the partition associated to 

1 ma xya  belonging to 2 ( 1)P m − . Assume the partition associated to x  has exactly k  intervals giving 

singletons 1,...,kc c  and every 
( )jj ic A


 , so that 1 1k kx uc v c v=  , with , ju v  as reduced words; otherwise, the 

argument is similar. Center jc  w.r.t.  , denoting :jb = ( )jc , and jc : 1j jc b= −  , to develop 

( )

1

k
j

j

j

x b x x
=

= + , where 1 1 1 1: k k k kx uc v c v c v− −=  ; (1)
2 2 1: k kx uc v c v v=  ; 

( )
1 1 1 1 1 1:j

k k j j j j jx uc v c v v c v c v+ + − −=   , for 2 1j k  − ; and ( )
1 1 1 1:k

k k kx uv c v c v− −=  . 

Thus the partition associated to (1)
1 ma x ya  belongs to 2 ( 3)P m − , and 

(2) ( ),..., kx x  may be expressed as 

algebraic sums (with 1  as coefficients) of random variables x  having the same generic form as x , but the 

partition associated to each 1 ma xya  belongs to 2 ( 1)P p − , with some p m . Therefore 
( )

1( ) 0j
r ma x c ya = , 

for every 1,..., ,j k=  via the inductive hypothesis. Moreover, 1( ) 0r ma x c ya = , since 1 r ma x c ya  is a quasi-

simple random variable. 

We may conclude by induction.  

LEMMA 3.7. Let 1 nw a a A=   , s.t. all 
jj ia A  are centered w.r.t.  , , and the partition   

associated to w  is a crossing pairing. Then ( ) 0w = . 

Proof. In view of the weak-independence and the Remark 3.3, it remains to consider the partition 

associated to w  has at least an interval, different of (1,2)  or ( 1, )n n− . Thus, for 6n = , only three cases are: 

the partitions  1 (1,5),(2,3),(4,6) = ,  2 (1,5),(2,6),(3,4) = ,  3 (1,3),(2,6),(4,5) = . 
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Denote 
22 3 1: ia a c A=  , for 1 , 

33 4 1: ia a c A=  , for 2 , and 
44 5 1: ia a c A=  , for 3 . We may express w  

in reduced form as 1 1 6a c ya , for 1 , and 1 1 6a uc ya , for 2 , but 1 1 6a uc a , for 3 ; where: 4 5 :a a y= , for 1 ; 

2 :a u= , and 5 :a y= , for 2 ; 2 3 :a a u= , for 3 . Center 1c  w.r.t.   to get w  as a sum of quasi-simple random 

variables; and thus, ( ) 0w = , always. 

Let 6n  , and the statement true for all p n . Then, for 1 nw a a A=   , the inferences below help to 

conclude by induction. 

When 
12 1 1:

nn n n ia a c A
−− − −=   becomes a singleton in w , we may express 1 1n nw a xc a A−=  , as in 

Lemma 3.5, s.t. the partition associated to 1 na xa , is a crossing pairing. Then center 1nc −  w.r.t.  , to get 

1 1 1 1n n n nw b a xa a xc a− −= + , with 1 1: ( )n nb c− −= , and 1 1 1 :n nc b− −−  = 1nc − , and remark the partition associated to 

1 na xa  is crossing and belongs to 2 ( 2)P n − ; hence 1( ) 0na xa = , by the inductive  hypothesis. Moreover, 

1 1( ) 0n na xc a− = , by Lemma 3.5. 

When ( 2, 1)n n− −  , we may express 1 r nw a xc ya= , as in Lemma 3.6, denoting by 1 :
rr r r ia a c A+ =   

the singleton corresponding to the greatest r  for which ( , 1)r r +  . The partition associated to 1 na xya  is 

crossing and belongs to 2 ( 2)P n − . By centering rc  w.r.t.  , we get now 1 1r n r nw b a xya a xc ya= + , with 

: ( )r rb c= , and 1 :r r rc b c−  = , hence ( ) 0w = ; because 1( ) 0na xya = , via the inductive hypothesis, and 

1( ) 0r na xc ya = , by Lemma 3.6.  

If ( , , )A    is a quantum probability space as before, and 1 2,x x A  are random variables s.t. one of 

them is centered w.r.t.  , , then 1 2 2 1 2( ) ( , )x x k x x = , and 1 2 2 1 2( ) ( , )x x k x x = ; whenever, e.g., 2k  and 2k   

are the tensor/free/Boolean cumulants (see, e.g., [14]) w.r.t.  , , respectively, of order two. In the sequel, 

we may use any of these choices. 

In general, the scalars involved below 1( ,..., )nk x x , for 2 ( )NC n , can be described as follows. 

1) If   has a single block, then that is an outer block of  , and 1 2( , )k x x := 2 1 2( , )k x x ; 

2) If =   , with 2 ( )NC i  and ( )2 { 1,..., }NC i n + , then  

1( ,..., )nk x x := 1( ,..., )ik x x  1( ,..., )i nk x x + ; 

3) If   contains the block (1, )n , and the subpartition =  2,..., 1n − , then  

1( ,..., )nk x x := 2k 
1 2 1( , ) ( ,..., );n nx x k x x −  where, more generally, for a subpartition   of 

2 ( )NC n , with 2 ( )NC S , and  1,...,S s= , the scalars ( , )ik x i S  , can be described in the following 

way. 

1) If   has a single block, then that is an inner block of  , and 1 2( , )k x x := 2 1 2( , )k x x ; 

2) If =   , with 2 1( )NC S , and 2 2( )NC S , then  

       1( ,..., )sk x x := 1 2( , ) ( , )i ik x i S k x i S    .  

LEMMA 3.8. Let 1 nw a a A=   , s.t. all 
jj ia A  are centered w.r.t.  , , and the partition   

associated to w  is a non-crossing pairing. Then ( )w = 1( ,..., )nk a a . 

Proof. Due to the weak-independence, it remains to consider (1, )n  . For 2n =  and 4n = , the 

assertion is trivial, respectively immediate (via Remark 3.3). For 6n = , we illustrate only the case 

 (1,6),(2,3),(4,5) = ; the case  (1,6),(2,5),(3,4) =  is similar. So, 1 5 6w a xc a= , where 2 3:x a a= , and 

44 5 5: ia a c A=  ; and 5 1 6 1 5 6w b a xa a xc a= + , with 5 5: ( )b c= , and 5 5 51 :c b c−  = ; then Lemma 3.5 and our 

assertion for 4n =  imply, with  (1,6),(2,3) = , 

( )w = 5 1 6( )b a xa = 5 1 2 3 6( , , , )b k a a a a = 5 2 1 6( , )b k a a
2 2 3( , )k a a

= 1 6( ,..., )k a a . 
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Let 6n  . Suppose the assertion true for all p n . To conclude by induction, remark alternatively the 

next facts. 

When 
12 1 1:

nn n n ia a c A
−− − −=   becomes a singleton in w , we express 1 1n nw a xc a−= , as in Lemma 3.5, 

again, but the partition associated to 1 na xa  is now a non-crossing pairing. Thus, we get 

1 1 1 1n n n nw b a xa a xc a− −= + , centering 1nc −  w.r.t.  , with 1 1: ( )n nb c− −= , and 1 1 1 :n nc b− −−  = 1nc − ; and remark 

1 1( ) 0n na xc a− = , by  Lemma 3.5. Let ( )2 {2,..., 3}NC n −  be the partition associated to x . Since 

 (1, )n  ( )2: {1,..., } \{ 2, 1}NC n n n=  − −  is associated to 1 na xa , the induction assumption implies 

1( )na xa = 1 2 3( , ,..., , )n nk a a a a − = 2 1 2 3( , ) ( ,..., )n nk a a k a a
 − . But,  = (1, )n  , where  

: =  ( 2, 1)n n − − ( )2 {2,..., 1}NC n − . Then, 2 1 2 1( ) ( , ) ( ,..., )n nw k a a k a a
 − = = 1( ,..., )nk a a . 

When ( 2, 1)n n− −  , we express 1 r nw a xc ya=  as in Lemma 3.6, where 1 :
rr r r ia a c A+ =   is the 

singleton corresponding to the largest r  for which ( , 1)r r +  . But now the partition associated to 1 na xya  is 

from 2 ( 2)NC n− . Center rc  w.r.t.  , to get 1 1r n r nw b a xya a xc ya= + , where : ( )r rb c= , and 1 :r r rc b c−  = ; 

but 1( ) 0r na xc ya = , by Lemma 3.6, again. Let ( )2 {2,..., 1}\{ , 1}NC n r r − +  be the partition associated to 

xy . Since  (1, )n  =: ( )2 {1,..., }\{ , 1}NC n r r +  is associated to 1 na xya , the induction hypothesis implies 

1( )na xya = 1 2 1 2 1( , ,..., , ,..., , )r r n nk a a a a a a − + − = 2 1 2 1 2 1( , ) ( ,..., , ,..., )n r r nk a a k a a a a
 − + − . 

Thus, ( )w = 1( ,..., )nk a a ; because   = (1, )n  , with : =  ( , 1)r r + and ( )2 {2,..., 1}NC n − .  

4. C-FREE GAUSSIAN FAMILY AND MULTIVARIATE CLT 

We remind a scalar matrix  
,ij i j I

q q


=  is positive if and only if ,

, 1

0
k l

n

i i k l

k l

q
=

   , for all n , all 

1,..., ni i I , and all 1,..., n   . 

The following definition comes from [4, 11]. 

Definition 4.1. Let  
,ij i j I

q q


=  and  
,ij i j I

r r


=  be (positive) scalar matrices. Let ( , )A   be a quantum 

(*-) probability space. A family of (selfadjoint) random variables ( )i i Ig g =  in this is called a centered         

c-free Gaussian family of  covariances q  and r , if its distribution is of the following form, for all j  and 

all 1,..., ji i I : 

1
( ... )

ji ig g =
( )

1

2

( ,..., )
ji i

NC j

k g g



 ; where  
1

( ,..., )
ji ik g g :=

( , ) ( ) ( , ) ( )
k l k li i i i

k l k l

q r
   

  .  

THEOREM 4.2. Let ( , , )A    be a quantum (*-)probability space, and  ,i
rX i I A  , r be a 

sequence of  , -freely independent sets of (selfadjoint) random variables in this, s.t. rX = ( )i
r i IX   has the 

same joint distribution for all r , and all variables are centered, both  w.r.t.  , . Consider, for every 

1N  , the sums 1

1

:
N

i i
N rN

r

S X
=

=  A , and : ( )i
N N i IS S =  as random vector in ( , )A  . Denote the covariances 

of the variables w.r.t.  ,  by  
,ij i j I

q q


=  and  
,ij i j I

r r


= ; i.e., :ijq = ( )i j
r rX X , and :ijr = ( )i j

r rX X . Then 

distr
NS g⎯⎯⎯→ ; where ( )i i Ig g =  is a centered  c-free Gaussian family of (positive) covariances q  and r . 
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Proof. Since all rX  have the same joint distribution w.r.t.  , , and the  , -freeness gives a rule for 

computing joint moments w.r.t.  , from the values of the moments of the individual variables w.r.t.  , , 

for all fixed j  and all 1,..., ji i I , the moment 1

1
( ... )j

j

ii

r rX X  depends only on the partition ( )P j  

corresponding to 1( ,..., )jr r   j , and uniquely defining an equivalence relation ~  on  1,..., j  by 

~ k lk l r r  = . We may denote 1

1
( ... )j

j

ii

r rX X =: 1( ; ,..., )ji i  . 

Thus, 

1( ... )jii
N NS S = 1

1

1

1

,..., 1

( ) ( ... )j

j

j

N
iij

r rN
r r

X X
=

 =
( )

1
1( ) ( ; ,..., )j

N jN
P j

A i i




  , 

as in [4, 8, 13, 11] (see also [7]); where   denotes the number of blocks in  ; and the number of 

representatives of the equivalence class (w.r.t. ~ ) corresponding to the involved partition 

: ( 1) ( 1)NA N N N

= −  −  +  grows asymptotically like N


 for large N . Lemma 3.2 implies that every 

partition with singletons has null contribution in the sum above. But the partitions without singletons have 

2

j
   blocks, and the limit of the factor 1( ) j

NN
A


 is 0 , if 

2

j
  . So 1lim ( ... )jii

N N
N

S S
→



( )2

1( ; ,..., )j

P j

i i


=   , 

because   is a pairing, if ( )P j  has no singletons and its number of blocks is equal to 
2

j
. Thus, the odd 

moments vanish, since 2 ( )P j  is void, when j  is odd. We may conclude, by Lemmata 3.7 – 3.8, because 

the crossing pairings have null contribution in the previous sum, and, respectively, the non-crossing pairings 

give the desired contribution.  

Remarks 4.3. 1) As in the classical or free cases [7, 11] (see also [6, 16], for simple proofs), the 

assumption of being identically distributed for the involved random vectors may be replaced by the pair 

(i)&(ii) below, with essentially the same proof as above, but we do detail this elsewhere: 

i) 1sup ( ... )jii
r r rX X   , 1sup ( ... )jii

r r rX X    (for all j ,  and all 1,..., ji i I ); 

ii) there exist 
1

1lim ( )
N

i j
ij r r

N
r

N
q X X

→
=

=   and 
1

1lim ( )
N

i j
ij r r

N
r

N
r X X

→
=

=  . 

2) The combinatorial description of the joint moments of a Gaussian family (: multivariate normal 

distribution) involving all pairings instead of non-crossing pairings (as, in particular, a semicircular family 

[11, 13] in the free probability theory) is usually named the Wick formula in the quantum field theory (see, 

e.g., [12]). By analogy, the above formula (see also [4]) describing the joint moments of such a c-free 

Gaussian family may be interpreted as a c-free Wick formula.  

We send to [9, 10] for some operator-valued versions of these facts or other generalizations. 
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