OVERPARTITIONS AS SUMS OVER PARTITIONS

Mircea MERCA
University of Craiova, Department of Mathematics
A. I. Cuza 13, Craiova 200585, Romania
Corresponding author: Mircea MERCA, E-mail: mircea.merca@profinfo.edu.ro

Abstract

In this paper, we consider the multiplicity of the odd parts in all the partitions of n and provide a new formula for the number of the overpartitions of n, i.e., $$
\bar{p}(n)=\sum_{t_{1}+2 t_{2}+\cdots+n t_{n}=n}\left(1+t_{1}\right)\left(1+t_{3}\right) \cdots\left(1+t_{2\lceil n / 2\rceil-1}\right) .
$$

Similar results for the number of the overpartitions of n into odd parts are introduce in this context.
Key words: partitions, overpartitions

1. INTRODUCTION

Recall [1] that a composition of a positive integer n is a sequence of natural numbers $\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}\right)$ whose sum is n, i.e.,

$$
\begin{equation*}
n=\lambda_{1}+\lambda_{2}+\cdots+\lambda_{k} \tag{1}
\end{equation*}
$$

When the order of integers λ_{i} does not matter, the representation (1) is known as an integer partition and can be rewritten as

$$
n=t_{1}+2 t_{2}+\cdots+n t_{n}
$$

where each positive integer i appears t_{i} times in the partition. The number of parts of this partition is given by

$$
t_{1}+t_{2}+\cdots+t_{n}=k
$$

For consistency, we consider a partition of n a non-increasing sequence of natural numbers whose sum is n. For example, the partitions of 4 are given as:

$$
(4),(3,1),(2,2),(2,1,1),(1,1,1,1) .
$$

The fastest algorithms for enumerating all the partitions of an integer have recently been presented by Merca [7. 8]. As usual, we denote by $p(n)$ the number of integer partitions of n and we have the generating function

$$
\sum_{n=0}^{\infty} p(n) q^{n}=\frac{1}{(q ; q)_{\infty}}
$$

Here and throughout this paper, we use the following customary q-series notation:

$$
\begin{aligned}
& (a ; q)_{n}= \begin{cases}1, & \text { for } n=0 \\
(1-a)(1-a q) \cdots\left(1-a q^{n-1}\right), & \text { for } n>0\end{cases} \\
& (a ; q)_{\infty}=\lim _{n \rightarrow \infty}(a ; q)_{n}
\end{aligned}
$$

An overpartition of n is a non-increasing sequence of natural numbers whose sum is n in which the first occurrence of a number may be overlined [4]. Let $\bar{p}(n)$ denote the number of overpartitions of an integer n. For example, $\bar{p}(4)=14$ because there are 14 possible overpartitions of 4 :
(4), $(\overline{4}),(3,1),(3, \overline{1}),(\overline{3}, 1),(\overline{3}, \overline{1}),(2,2),(\overline{2}, 2),(2,1,1),(2, \overline{1}, 1),(\overline{2}, 1,1),(\overline{2}, \overline{1}, 1),(1,1,1,1),(\overline{1}, 1,1,1)$.

Since the overlined parts form a partition into distinct parts and the non-overlined parts form an ordinary partition, we have the following generating function for overpartitions,

$$
\sum_{n=0}^{\infty} p(n) q^{n}=\frac{(-q ; q)_{\infty}}{(q ; q)_{\infty}}
$$

In this paper, we consider all the partitions of n in order to introduce a new formula for $\bar{p}(n)$. This formula considers only the multiplicity of the odd parts.

THEOREM 1. Let n be a non-negative integer. Then

$$
\bar{p}(n)=\sum_{t_{1}+2 t_{2}+\cdots+n t_{n}=n}\left(1+t_{1}\right)\left(1+t_{3}\right) \cdots\left(1+t_{2\lceil n / 2\rceil-1}\right) .
$$

Taking into account that

$$
\begin{aligned}
4 & =0 \cdot 1+0 \cdot 2+0 \cdot 3+1 \cdot 4= \\
& =1 \cdot 1+0 \cdot 2+1 \cdot 3+0 \cdot 4= \\
& =0 \cdot 1+2 \cdot 2+0 \cdot 3+0 \cdot 4= \\
& =2 \cdot 1+1 \cdot 2+0 \cdot 3+0 \cdot 4= \\
& =4 \cdot 1+0 \cdot 2+0 \cdot 3+0 \cdot 4,
\end{aligned}
$$

the case $n=4$ of Theorem 1 reads as follows

$$
\begin{aligned}
\bar{p}(4) & =(1+0)(1+0)+(1+1)(1+1)+(1+0)(1+0)+(1+2)(1+0)+(1+4)(1+0)= \\
& =1+4+1+3+5=14
\end{aligned}
$$

Let $\overline{p_{o}}(n)$ be the number of overpartitions of n into odd parts. Then its generating function is

$$
\begin{equation*}
\sum_{n=0}^{\infty} \overline{p_{o}}(n) q^{n}=\frac{\left(-q ; q^{2}\right)_{\infty}}{\left(q ; q^{2}\right)_{\infty}} \tag{2}
\end{equation*}
$$

This expression first appeared in the following series-product identity

$$
\sum_{n=0}^{\infty} \frac{(-1 ; q)_{n} q^{n(n+1) / 2}}{(q ; q)_{n}}=\frac{\left(-q ; q^{2}\right)_{\infty}}{\left(q ; q^{2}\right)_{\infty}}
$$

which was given by Lebesgue [6] in 1840. More recently, the generating function of $\overline{p_{o}}(n)$ appeared in the works of Bessenrodt [2], Merca [9], Merca, Wang and Yee [10], Santos and Sills [11]. Various arithmetic
properties of $\overline{p_{o}}(n)$ have been investigated by Chen [3], Hirschhorn and Sellers [5].
In analogy with Theorem 11 we have the following result.
THEOREM 2. Let n be a non-negative integer. Then

$$
\overline{p_{o}}(n)=\sum_{t_{1}+2 t_{2}+\cdots+n t_{n}=n}(-1)^{t_{2}+t_{4}+\cdots+t_{2[n / 2\rfloor}}\left(1+t_{1}\right)\left(1+t_{3}\right) \cdots\left(1+t_{2\lceil n / 2\rceil-1}\right) .
$$

The case $n=4$ of this theorem reads as

$$
\begin{aligned}
\overline{p_{o}}(4)= & (-1)^{0+1}(1+0)(1+0)+(-1)^{0+0}(1+1)(1+1)+(-1)^{2+0}(1+0)(1+0)+ \\
& +(-1)^{1+0}(1+2)(1+0)+(-1)^{0+0}(1+4)(1+0)= \\
= & -1+4+1-3+5=6
\end{aligned}
$$

and the six overpartitions in question are:

$$
(3,1),(3, \overline{1}),(\overline{3}, 1),(\overline{3}, \overline{1}),(1,1,1,1),(\overline{1}, 1,1,1) .
$$

In the following result, we consider only the partitions of n in which the odd parts have the multiplicity at most 2 and the even parts have the multiplicity at most 1 .

THEOREM 3. Let n be a non-negative integer. Then

$$
\overline{p_{o}}(n)=\sum_{\substack{t_{1}+2 t_{1}+\cdots+n t_{n}=n \\ t_{2 k-1} \leqslant 2, t_{2 k} \leqslant 1}}\left(1+t_{1} \bmod 2\right)\left(1+t_{3} \bmod 2\right) \cdots\left(1+t_{2[n / 2]-1} \bmod 2\right) .
$$

For example, the partitions of 4 in which the odd parts have the multiplicity at most 2 and the even parts have the multiplicity at most 1 are:

$$
(4),(3,1),(2,1,1) .
$$

According to Theorem 3, we can write

$$
\overline{p_{o}}(n)=(1+0)(1+0)+(1+1)(1+1)+(1+0)(1+0)=1+4+1=6 .
$$

Inspired by Theorem 2, we remark the following connection between the Jacoby theta function

$$
\vartheta_{3}(q)=\sum_{n=-\infty}^{\infty} q^{n^{2}}
$$

and the partitions in which the odd parts have the multiplicity at most 2 and the even parts have the multiplicity at most 1 .

THEOREM 4. Let n be a non-negative integer. The coefficient of q^{n} in the Jacobi theta function $\vartheta_{3}(q)$ can be expressed as

$$
\sum_{\substack{t_{1}+2 t_{2}+\cdots+n t_{n}=n \\ t_{2 k-1} \leqslant 2, t_{2 k} \leqslant 1}}(-1)^{\left.t_{2}+t_{4}+\cdots+t_{2[n /]}\right]}\left(1+t_{1} \bmod 2\right)\left(1+t_{3} \bmod 2\right) \cdots\left(1+t_{2[n / 2]-1} \bmod 2\right) .
$$

For example, the case $n=4$ of Theorem 4 reads as follows

$$
(-1)^{0+1}(1+0)(1+0)+(-1)^{0+0}(1+1)(1+1)+(-1)^{1+0}(1+0)(1+0)=-1+4-1=2
$$

The rest of the paper continues with the proofs of our theorems.

2. PROOF OF THEOREM 1

Considering Euler's identity

$$
(-q ; q)_{\infty}=\frac{1}{\left(q ; q^{2}\right)_{\infty}}
$$

we can write the generating function of $\bar{p}(n)$ as follows

$$
\sum_{n=0}^{\infty} \bar{p}(n) q^{n}=\frac{1}{(q ; q)_{\infty}\left(q ; q^{2}\right)_{\infty}}=\prod_{n=1}^{\infty} \frac{1}{\left(1-q^{n}\right)^{1+n \bmod 2}}
$$

In order to prove our theorem, we consider the following identity.
LEMMA 1. Let n be a positive integer. For $|z|<1$,

$$
\prod_{k=1}^{n} \frac{1}{\left(1-q^{k-1} z\right)^{1+k \bmod 2}}=\sum_{k=0}^{\infty}\left(\sum_{t_{1}+t_{2}+\cdots+t_{n}=k} \prod_{i=1}^{n}\left(1+(i \bmod 2) t_{i}\right) q^{(i-1) t_{i}}\right) z^{k}
$$

Proof. We are to prove this identity by induction on n. For $n=1$, we have

$$
\frac{1}{(1-z)^{2}}=\sum_{k=0}^{\infty}(1+k) z^{k}
$$

and the base case of induction is finished. We suppose that the relation

$$
\prod_{k=1}^{m} \frac{1}{\left(1-q^{k-1} z\right)^{1+k \bmod 2}}=\sum_{k=0}^{\infty}\left(\sum_{t_{1}+t_{2}+\cdots+t_{m}=k} \prod_{i=1}^{m}\left(1+(i \bmod 2) t_{i}\right) q^{(i-1) t_{i}}\right) z^{k}
$$

is true for any integer $m, 1 \leqslant m<n$. On the one hand, when n is odd, we can write

$$
\begin{aligned}
& \prod_{k=1}^{n} \frac{1}{\left(1-q^{k-1} z\right)^{1+k \bmod 2}}=\frac{1}{\left(1-q^{n-1} z\right)^{2}} \prod_{k=1}^{n-1} \frac{1}{\left(1-q^{k-1} z\right)^{1+k \bmod 2}}= \\
& =\left(\sum_{k=0}^{\infty}(1+k) q^{(n-1) k} z^{k}\right)\left(\sum_{k=0}^{\infty}\left(\sum_{t_{1}+t_{2}+\cdots+t_{n-1}=k} \prod_{i=1}^{n-1}\left(1+(i \bmod 2) t_{i}\right) q^{(i-1) t_{i}}\right) z^{k}\right)= \\
& =\sum_{k=0}^{\infty}\left(\sum_{t_{1}+t_{2}+\cdots+t_{n}=k} \prod_{i=1}^{n}\left(1+(i \bmod 2) t_{i}\right) q^{(i-1) t_{i}}\right) z^{k},
\end{aligned}
$$

where we have invoked the well-known Cauchy multiplications of two power series. On the other hand, when n is even, we have

$$
\begin{aligned}
& \prod_{k=1}^{n} \frac{1}{\left(1-q^{k-1} z\right)^{1+k \bmod 2}}=\frac{1}{1-q^{n-1} z} \prod_{k=1}^{n-1} \frac{1}{\left(1-q^{k-1} z\right)^{1+k \bmod 2}}= \\
& =\left(\sum_{k=0}^{\infty} q^{(n-1) k} z^{k}\right)\left(\sum_{k=0}^{\infty}\left(\sum_{t_{1}+t_{2}+\cdots+t_{n-1}=k} \prod_{i=1}^{n-1}\left(1+(i \bmod 2) t_{i}\right) q^{(i-1) t_{i}}\right) z^{k}\right)= \\
& =\sum_{k=0}^{\infty}\left(\sum_{t_{1}+t_{2}+\cdots+t_{n}=k i=1} \prod_{i=1}^{n}\left(1+(i \bmod 2) t_{i}\right) q^{(i-1) t_{i}}\right) z^{k} .
\end{aligned}
$$

This concludes the proof.

By this lemma, with z replaced by q, we obtain

$$
\prod_{k=1}^{n} \frac{1}{\left(1-q^{k}\right)^{1+k \bmod 2}}=\sum_{k=0}^{\infty}\left(\sum_{t_{1}+t_{2}+\cdots+t_{n}=k} \prod_{i=1}^{n}\left(1+(i \bmod 2) t_{i}\right) q^{i t_{i}}\right)
$$

The limiting case $n \rightarrow \infty$ of this relation reads as follows

$$
\prod_{k=1}^{\infty} \frac{1}{\left(1-q^{k}\right)^{1+k \bmod 2}}=\sum_{k=0}^{\infty}\left(\sum_{t_{1}+2 t_{2}+\cdots+k t_{k}=k} \prod_{i=1}^{k}\left(1+(i \bmod 2) t_{i}\right)\right) q^{k}
$$

The proof is finished.

3. PROOF OF THEOREM 2

The proof of this theorem is quite similar to the proof of Theorem 1. Considering the generating function of $\overline{p_{o}}(n)$, we can write

$$
\sum_{n=0}^{\infty}(-1)^{n} \overline{p_{o}}(n) q^{n}=\frac{1}{(-q ; q)_{\infty}\left(-q ; q^{2}\right)_{\infty}}=\prod_{n=1}^{\infty} \frac{1}{\left(1+q^{n}\right)^{1+n \bmod 2}}
$$

By Lemma 1, with z replaced by $-q$, we obtain

$$
\prod_{k=1}^{n} \frac{1}{\left(1+q^{k}\right)^{1+k \bmod 2}}=\sum_{k=0}^{\infty}\left(\sum_{t_{1}+t_{2}+\cdots+t_{n}=k}(-1)^{k} \prod_{i=1}^{n}\left(1+(i \bmod 2) t_{i}\right) q^{i t_{i}}\right)
$$

The limiting case $n \rightarrow \infty$ of this relation reads as follows

$$
\prod_{k=1}^{\infty} \frac{1}{\left(1+q^{k}\right)^{1+k \bmod 2}}=\sum_{k=0}^{\infty}\left(\sum_{t_{1}+2 t_{2}+\cdots+k t_{k}=k} \prod_{i=1}^{k}(-1)^{t_{i}}\left(1+(i \bmod 2) t_{i}\right)\right) q^{k}
$$

Thus we deduce that

$$
(-1)^{n} \overline{p_{o}}(n)=\sum_{t_{1}+2 t_{2}+\cdots+n t_{n}=n}(-1)^{t_{1}+t_{2}+\cdots+t_{n}}\left(1+t_{1}\right)\left(1+t_{3}\right) \cdots\left(1+t_{2\lceil n / 2\rceil-1}\right)
$$

and the proof is finished.

3. PROOF OF THEOREM 3

The proof of this theorem is quite similar to the proof of Theorem 1 . The generating function of $\overline{p_{o}}(n)$ can be written as

$$
\sum_{n=0}^{\infty} \overline{p_{o}}(n) q^{n}=(-q ; q)_{\infty}\left(-q ; q^{2}\right)_{\infty}=\prod_{n=1}^{\infty}\left(1+q^{n}\right)^{1+n \bmod 2}
$$

We consider the following identity.
LEMMA 2. Let n be a positive integer. For $|z|<1$,

$$
\prod_{k=1}^{n}\left(1+q^{k-1} z\right)^{1+k \bmod 2}=\sum_{k=0}^{n+\lceil n / 2\rceil}\left(\sum_{t_{1}+t_{2}+\cdots+t_{n}=k} \prod_{i=1}^{n}\binom{1+i \bmod 2}{t_{i}} q^{(i-1) t_{i}}\right) z^{k}
$$

Proof. We are to prove this identity by induction on n. For $n=1$, we have

$$
(1+z)^{2}=\binom{2}{0}+\binom{2}{1} z+\binom{2}{2} z^{2}
$$

and the base case of induction is finished. We suppose that the relation

$$
\prod_{k=1}^{m}\left(1+q^{k-1} z\right)^{1+k \bmod 2}=\sum_{k=0}^{m+\lceil m / 2\rceil}\left(\sum_{t_{1}+t_{2}+\cdots+t_{m}=k} \prod_{i=1}^{m}\binom{1+i \bmod 2}{t_{i}} q^{(i-1) t_{i}}\right) z^{k}
$$

is true for any integer $m, 1 \leqslant m<n$. We can write

$$
\begin{aligned}
& \prod_{k=1}^{n}\left(1+q^{k-1} z\right)^{1+k \bmod 2}=\left(1+q^{n-1} z\right)^{1+n \bmod 2} \prod_{k=1}^{n-1}\left(1+q^{k-1} z\right)^{1+k \bmod 2}= \\
& =\left(\sum_{k=0}^{1+n \bmod 2}\binom{1+n \bmod 2}{k} q^{(n-1) k} z^{k}\right)\left(\begin{array}{c}
n-1+\lceil(n-1) / 2\rceil \\
\left.\sum_{k=0}\left(\sum_{t_{1}+t_{2}+\cdots+t_{n-1}=k} \prod_{i=1}^{n-1}\binom{1+i \bmod 2}{t_{i}} q^{(i-1) t_{i}}\right) z^{k}\right)= \\
=\sum_{k=0}^{\infty}\left(\sum_{t_{1}+t_{2}+\cdots+t_{n}=k} \prod_{i=1}^{n}\binom{1+i \bmod 2}{t_{i}} q^{(i-1) t_{i}}\right) z^{k}
\end{array}, l\right.
\end{aligned}
$$

where we have invoked the well-known Cauchy multiplications of two power series.
By this lemma, with z replaced by q, we obtain

$$
\prod_{k=1}^{n}\left(1+q^{k}\right)^{1+k \bmod 2}=\sum_{k=0}^{n+\lceil n / 2\rceil} \sum_{t_{1}+t_{2}+\cdots+t_{n}=k} \prod_{i=1}^{n}\binom{1+i \bmod 2}{t_{i}} q^{t_{1}+2 t_{2}+\cdots+n t_{n}}
$$

The limiting case $n \rightarrow \infty$ of this relation read as

$$
\prod_{k=1}^{\infty}\left(1+q^{k}\right)^{1+k \bmod 2}=\sum_{k=0}^{\infty} \sum_{t_{1}+2 t_{2}+\cdots+k t_{k}=k} \prod_{i=1}^{n}\binom{1+i \bmod 2}{t_{i}} q^{k}
$$

The proof follows easily considering that $1+i \bmod 2 \in\{1,2\}$.

3. PROOF OF THEOREM 4

Recall that the reciprocal of the generating function of the overpartitions functions $\bar{p}(n)$ appears in a classical theta identity (often attributed to Gauss and sometimes Jacobi) [1, p. 23, eq (2.2.12)]:

$$
\begin{equation*}
\frac{(q ; q)_{\infty}}{(-q ; q)_{\infty}}=\sum_{n=-\infty}^{\infty}(-1)^{n} q^{n^{2}} \tag{3}
\end{equation*}
$$

The reciprocal of the generating function of the overpartitions functions $\bar{p}(n)$ can be written as

$$
\frac{(q ; q)_{\infty}}{(-q ; q)_{\infty}}=(q ; q)_{\infty}\left(q ; q^{2}\right)_{\infty}=\prod_{n=1}^{\infty}\left(1-q^{n}\right)^{1+n \bmod 2}
$$

By Lemma 2, with z replaced by $-q$, we obtain

$$
\prod_{k=1}^{n}\left(1-q^{k}\right)^{1+k \bmod 2}=\sum_{k=0}^{n+\lceil n / 2\rceil}\left(\sum_{t_{1}+t_{2}+\cdots+t_{n}=k}(-1)^{k} \prod_{i=1}^{n}\binom{1+i \bmod 2}{t_{i}} q^{i t_{i}}\right)
$$

The limiting case $n \rightarrow \infty$ of this relation reads as follows

$$
\prod_{k=1}^{\infty}\left(1-q^{k}\right)^{1+k \bmod 2}=\sum_{k=0}^{\infty}\left(\sum_{t_{1}+2 t_{2}+\cdots+k t_{k}=k} \prod_{i=1}^{n}(-1)^{t_{i}}\binom{1+i \bmod 2}{t_{i}}\right) q^{k}
$$

Thus we deduce that the coefficient of q^{n} in (3) is given by

$$
\sum_{t_{1}+2 t_{2}+\cdots+n t_{n}=n}(-1)^{t_{1}+t_{2}+\cdots+t_{n}}\left(1+t_{1} \bmod 2\right)\left(1+t_{3} \bmod 2\right) \cdots\left(1+t_{2\lceil n / 2\rceil-1} \bmod 2\right) .
$$

The proof follows easily multiplying this expression by $(-1)^{n}$.

REFERENCES

1. G. E. ANDREWS, The theory of partitions, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1998 (Reprint of the 1976 original).
2. C. BESSENRODT, On pairs of partitions with steadily decreasing parts, J. Combin. Theory Ser. A, 99, pp. 162-174, 2002.
3. S.-C. CHEN, On the number of overpartitions into odd parts, Discrete Math., 325, pp. 32-37, 2014.
4. S. CORTEEL, J. LOVEJOY, Overpartitions, Trans. Amer. Math. Soc., 356, pp. 1623-1635, 2004.
5. M. D. HIRSCHHORN, J. A. SELLERS, Arithmetic properties of overpartitions into odd parts, Ann. Comb., 10, pp. 353-367, 2006.
6. V. A. LEBESGUE, Sommation de quelques séeries, J. Math. Pure. Appl., 5, pp. 42-71, 1840.
7. M. MERCA, Fast algorithm for generating ascending compositions, J. Math. Model. Algorithms, 11. pp. 89-104, 2012.
8. M. MERCA, Binary diagrams for storing ascending compositions, Comput. J., 56, pp. 1320-1327, 2013.
9. M. MERCA, On the Ramanujan-type congruences modulo 8 for the overpartitions into odd parts, Quaest. Math., 2021, https: //doi.org/10.2989/16073606.2021.1966543
10. M. MERCA, C. WANG, A. J. YEE, A truncated theta identity of Gauss and overpartitions into odd parts, Ann. Comb., 23, pp. 907-915, 2019.
11. J. P. O. SANTOS, D. SILLS, q-Pell sequences and two identities of V. A. Lebesgue, Discrete Math., 257, pp. 125-142, 2002.
