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Abstract. In this paper, we determine the effect of the Fermi convolution power on the variance function of
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1. INTRODUCTION

It is well known that classical, free and boolean convolution is related to all partitions, non-crossing par-
titions and interval partitions, respectively. A new convolution is investigated in [11], which is called ”Fermi
convolution”. It is related to the set of those non-crossing partitions in which all the inner blocks are singletons,
i.e. the partitions corresponding to the fermionic creation and annihilation operators. The definition of this
operation is simple that at the first sight it might suggest that it is not a new type of convolution at all. Namely,
the Fermi convolution of two probability measures µ and ν with mean λ1 and λ2 respectively, is the shift of the
boolean convolution µ0 and ν0 by λ1 +λ2 where µ0 and ν0 are the zero-mean shifts of µ and ν . As for proba-
bility measures with zero mean, their Fermi and boolean convolutions coincide, many properties of the boolean
convolution remain valid in the Fermi case. One important consequence of this fact is that the fermionic central
limit theorem follows immediately from the boolean one. However, for measures with nonzero mean there are
some important differences between the Fermi and the boolean cases. One of these is that the boolean convolu-
tion of a measure µ with δa (the Dirac measure in a) is not necessarily the shift of µ by the amount of a (unlike
in the classical, free and fermionic cases). The limit distributions of the corresponding Poisson limit theorems
are also different. In the Fermi case one obtains the “fermionic Poisson-law” given in [13].

On the other hand, in the setting of noncommutative probability theory and in analogy with the theory
of natural exponential families (NEFs), a theory of Cauchy-Stieltjes Kernel (CSK) families has been recently
introduced, it is based on the Cauchy-Stieltjes kernel 1/(1−θx). Bryc [1] studied CSK families for compactly
supported probability measures ν . It was shown that in the neighborhood of θ = 0, such families can be
parameterized by the mean and under this parametrization, the family (and measure ν) is uniquely determined
by the variance function V (m) and the mean m0 of ν . Bryc and Hassairi [2] continued the study of CSK families
by extending the results in [1] to allow probability measures ν with unbounded support, providing the method
to determine the domain of means, introducing the “pseudo-variance” function that has no direct probabilistic
interpretation but has similar properties to the variance function and is equal to the variance function of the
CSK family generated by a probability measure ν of mean zero. Other properties and characterizations of CSK
families are also given in [3], [4], [5], [8], [9], [10] and [12].
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In this paper, we deal with Fermi convolution from a point of view related to CSK families. We determine
the formula for variance function under Fermi convolution power. Also, we give an approximation of the
elements of the CSK family generated by the Fermi Poisson distribution. The rest of this section will describe
some facts regarding CSK families as a background for the reader. Section 2 will give the effect of Fermi
convolution power on CSK families. In section 3, we give an approximation of elements of the CSK family
generated by the Fermi Poisson distribution.

Our notations are the ones used in [6]. Let ν be a non-degenerate probability measure with support bounded
from above. Then

Mν(θ) =
∫ 1

1−θx
ν(dx) (1)

is defined for all θ ∈ [0,θ+) with 1/θ+ = max{0,supsupp(ν)}.
For θ ∈ [0,θ+), we set

P(θ ,ν)(dx) =
1

Mν(θ)(1−θx)
ν(dx).

The set
K+(ν) = {P(θ ,ν)(dx);θ ∈ (0,θ+)}

is called the one-sided CSK family generated by ν .
Let kν(θ) =

∫
xP(θ ,ν)(dx) denote the mean of P(θ ,ν). According to [2, pages 579–580], the map θ 7→ kν(θ)

is strictly increasing on (0,θ+), it is given by the formula

kν(θ) =
Mν(θ)−1
θMν(θ)

. (2)

The image of the interval (0,θ+) by the function kν(.) is called the (one sided) domain of means of the family
K+(ν), it is denoted (m0(ν),m+(ν)). This leads to a parametrization of the family K+(ν) by the mean. In
fact, denoting by ψν the reciprocal of kν , and writing for m ∈ (m0(ν),m+(ν)), Q(m,ν)(dx) = P(ψν (m),ν)(dx), we
have that

K+(ν) = {Q(m,ν)(dx);m ∈ (m0(ν),m+(ν))}.

Now let
B = B(ν) = max{0,supsupp(ν)}= 1/θ+ ∈ [0,∞). (3)

Then it is shown in [2] that the bounds m0(ν) and m+(ν) of the one-sided domain of means (m0(ν),m+(ν))
are given by

m0(ν) = lim
θ→0+

kν(θ) and m+(ν) = B− lim
z→B+

1
Gν(z)

,

with Gν(z) is the Cauchy transform of ν given by

Gν(z) =
∫ 1

z− x
ν(dx). (4)

It is worth mentioning here that one may define the one-sided CSK family for a measure ν with support bounded
from below. This family is usually denoted K−(ν) and parameterized by θ such that θ− < θ < 0, where θ−
is either 1/b(ν) or −∞ with b = b(ν) = min{0, infsupp(ν)}. The domain of means for K−(ν) is the interval
(m−(ν),m0(ν)) with m−(ν) = b−1/Gν(b).

If ν has compact support, the natural domain for the parameter θ of the two-sided CSK family K (ν) =
K+(ν)∪K−(ν)∪{ν} is θ− < θ < θ+.

We now come to the notions of variance and pseudo-variance functions. The variance function

m 7→Vν(m) =
∫
(x−m)2Q(m,ν)(dx) (5)
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is a fundamental concept in the theory of CSK families as presented in [1]. Unfortunately, if ν doesn’t have
a first moment which is for example the case for free 1/2-stable laws, all the distributions in the CSK family
generated by ν have infinite variance. This fact has led the authors in [2] to introduce a notion of pseudo-
variance function Vν(m) defined by

Vν(m) = m
(

1
ψν(m)

−m
)
. (6)

If m0(ν) =
∫

xdν is finite, then from [2] the pseudo-variance function is related to the variance function by

Vν(m) =
m

m−m0
Vν(m). (7)

In particular, Vν =Vν when m0(ν) = 0.
Another interesting fact is that the pseudo-variance function Vν(.) characterizes the CSK family, that is,

the generating measure ν is uniquely determined by the pseudo-variance function Vν(.): if we set

z = z(m) = m+
Vν(m)

m
, (8)

then the Cauchy transform satisfies
Gν(z) =

m
Vν(m)

. (9)

Also the distribution Q(m,ν)(dx) may be written as Q(m,ν)(dx) = fν(x,m)ν(dx) with

fν(x,m) :=


Vν (m)

Vν (m)+m(m−x) , m ̸= 0 ;
1, m = 0, Vν(0) ̸= 0 ;
V′

ν (0)
V′

ν (0)−x , m = 0, Vν(0) = 0 .
(10)

We now recall the effect on a CSK family of applying an affine transformation to the generating measure.
Consider the affine transformation ϕ : x 7−→ (x−λ )/β where β ̸= 0 and λ ∈ R. Let ϕ(ν) be the image of ν

by ϕ . In other words, if X is a random variable with law ν , then ϕ(ν) is the law of (X − λ )/β , or ϕ(ν) =
D1/β (ν ⊞δ−λ ), where Dr(µ) denotes the dilation of measure µ by a number r ̸= 0, that is Dr(µ)(U) = µ(U/r).
The point m0 is transformed to (m0 −λ )/β . In particular, if β < 0 the support of the measure ϕ(ν) is bounded
from below so that it generates the left-sided family K−(ϕ(ν)). For m close enough to (m0 − λ )/β , the
pseudo-variance function is

Vϕ(ν)(m) =
m

β (mβ +λ )
Vν(βm+λ ). (11)

In particular, if the variance function exists, then Vϕ(ν)(m) = 1
β 2 Vν(βm+λ ).

Note that using the special case where ϕ is the reflection ϕ(x) =−x, one can transform a right-sided CSK
family to a left-sided family. If ν has support bounded from above and its right-sided CSK family K+(ν)
has domain of means (m0,m+) and pseudo-variance function Vν(m), then ϕ(ν) generates the left-sided CSK
family K−(ϕ(ν)) with domain of means (−m+,−m0) and pseudo-variance function Vϕ(ν)(m) = Vν(−m).

To close this section, we state the following result, due to Bryc [1], that will be used in Section 3.

PROPOSITION 1. Let Vνn be a family of analytic functions which are variance functions of a sequence of
CSK families (K (νn))n≥1.

If Vνn

n→+∞−−−−→V uniformly in a (complex) neighborhood of m0 ∈R and if V (m0)> 0, then there is ε > 0 such
that V is the variance function of a CSK family K (ν), generated by a probability measure ν parameterized by
the mean m ∈ (m0 − ε,m0 + ε).

Moreover, if a sequence of measures µn ∈ K (νn) such that m1 =
∫

xµn(dx) ∈ (m0 − ε,m0 + ε) does not
depends on n, then µn

n→+∞−−−−→ µ in distribution, where µ ∈ K (ν) has the same mean
∫

xµ(dx) = m1.
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2. FERMI CONVOLUTION

We will use the following notations. By P we denote the set of probability measures on R, P1, P2 and
P∞ are the subsets of probability measures with finite mean, finite mean and variance, and with finite moments
of all orders, respectively. A lower index 0 indicates vanishing mean, i.e. P1

0 (P2
0 , P∞

0 ) are the probability
measures with zero mean (and finite variance, and finite moments of all orders, respectively). By

C+ = {x+ iy ∈ C; y > 0} and C− = {x+ iy ∈ C; y < 0}

we denote the upper and lower complex half planes, respectively.
Let ν ∈ P . The K-transform Kν of ν is given by

Kν(z) = z− 1
Gν(z)

, for z ∈ C+. (12)

It is usually called self energy and it represent the analytic backbone of boolean additive convolution. The
following result list some useful properties of the K-transform (see [7, Proposition 2.2]).

PROPOSITION 2. Suppose Vν is the pseudo-variance function of the CSK family K+(ν) generated by a
non degenerate probability measure ν with A = supsupp(ν)< ∞. Then

(i) Kν is strictly decreasing on (A,+∞).

(ii) For m ∈ (m0(ν),m+(ν))
Kν (m+Vν(m)/m) = m. (13)

(iii) lim
z−→B+

Kν(z) = m+(ν), with B = B(ν) given by (3).

(iv) lim
z−→+∞

Kν(z) = m0(ν)≥−∞.

The author in [11] has introduced the B̃-transform for ν ∈ P2 by

B̃ν(z) = λ z+ zKν0

(
1
z

)
, (14)

where λ is the mean of ν and ν0 is the zero mean shift of ν . Since a measure ν ∈ P2 is uniquely determined
by its Cauchy transform Gν , the same is true for B̃ν .

Let ν1, ν2 ∈ P2. Let ν = ν1 •ν2 be the Fermi convolution of ν1 and ν2. According to [11, Theorem 3.1]
we have,

B̃ν(z) = B̃ν1(z)+ B̃ν2(z). (15)

Furthermore, ν ∈ P2 and the mean of ν is the sum of the means of ν1 and ν2.
We say that the probability measure ν ∈ P2 is infinitely divisible with respect to Fermi convolution if for

each n ∈ N, there exists νn ∈ P2 such that

ν = νn • .....•νn︸ ︷︷ ︸
n times

.

According to [11, Remark 3.2], all probability measures ν ∈ P2 are infinitely divisible in the Fermi sense.
For the clarity of our results in this paper, instead of considering the B̃-transform, we consider the H-

transform given by

Hν(z) = zB̃ν

(
1
z

)
= m0(ν)+Kν0(z) = m0(ν)+ z− 1

Gν0(z)
. (16)

Our interest in the H-transform stems from its linear property to Fremi convolution power, that is for all α > 0,
Hν•α (z) = αHν(z).
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The following result lists some properties of the H-transform that we need.

PROPOSITION 3. Suppose Vν is the pseudo-variance function of the CSK family K+(ν) generated by a
non degenerate probability measure ν ∈ P2 with A = supsupp(ν)< ∞. Then

(i) Hν is strictly decreasing on (A−m0(ν),+∞).

(ii) For m ∈ (m0(ν),m+(ν))

Hν

(
m+

Vν(m)

m
−m0(ν)

)
= m. (17)

(iii) lim
z−→+∞

Hν(z) = m0(ν).

Proof.
(i) The proof follows easily from (16) and Proposition 2(i).
(ii) For m ∈ (m0(ν),m+(ν)), using (16) and (13), we get

Hν

(
m+

Vν(m)

m
−m0(ν)

)
= m0(ν)+Kν0

(
m+

Vν(m)

m
−m0(ν)

)
= m0(ν)+Kν0

(
m−m0(ν)+

Vν0(m−m0(ν))

m−m0(ν)

)
= m.

(iii) The proof follows easily from (16) and Proposition 2(iv).

Next, we determine the formula for variance function under Fermi convolution power.

THEOREM 1. Suppose Vν is the pseudo-variance function of the CSK family K+(ν) generated by a non
degenerate probability measure ν ∈ P2 with A = supsupp(ν)<+∞. For α > 0, we have that:

(i) The support of ν•α is bounded from above.

(ii) For m close enough to m0(ν
•α) = αm0(ν),

Vν•α (m) = αVν(m/α)+m2(1/α −1)+m0(ν)(α −1)m. (18)

The variance functions of the CSK families generated by ν and ν•α exists and

Vν•α (m) = αVν(m/α)+m(m−αm0(ν))(1/α −1)+m0(ν)(α −1)(m−αm0(ν)). (19)

Proof.
(i) For measure ν ∈P2 with support bounded from above by A<+∞ and finite mean m0(ν), Gν0 is analytic

on the slit complex plane C \ (−∞,A−m0(ν)]. We have that {x ∈ (supp ν0)c; Gν0(x) ̸= 0} ⊂ (supp ν0)c

(see [14, Lemma 2.1]). This implies that Hν(.) and so Hν•α (.) are well defined on a subset of (supp ν0)c. So
G(ν•α )0(z) is well defined and analytic on a subset of (A−m0(ν),+∞). Then the support of (ν•α)0 is bounded
from above. This is the same for the support of ν•α .

(ii) One see that
m0(ν

•α) = lim
z−→+∞

Hν•α (z) = lim
z−→+∞

αHν(z) = αm0(ν).

For m close enough to αm0(ν) so that m/α ∈ (m0(ν),m+(ν)) and m+Vν•α (m)/m−m0(ν
•α)∈ (A−m0(ν),+∞),

we can apply (17) and the additive property of the H-transform to see that

Hν

(
m+

Vν•α (m)

m
−m0(ν

•α)

)
=

1
α

Hν•α

(
m+

Vν•α (m)

m
−m0(ν

•α)

)
=

m
α

= Hν

(
m/α +

Vν(m/α)

m/α
−m0(ν)

)
.
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Since Hν is strictly decreasing on (A−m0(ν),+∞), this implies that

m+
Vν•α (m)

m
−αm0(ν) = m/α +

Vν(m/α)

m/α
−m0(ν),

which is nothing but (18). Furthermore, the variance functions of the CSK families K+(ν) and K+(ν
•α) exists

and relation (19) follows from (7) and (18).

Remark 1. When m0(ν) = 0, we have Hν(z) =Kν(z) and the Fermi convolution • coincide with the boolean
additive convolution ⊎. Let ν = 1

2 δ−1 +
1
2 δ1 be the symmetric Bernoulli distribution, its Cauchy transform and

self energy are respectively

Gν(z) =
z

z2 −1
and Kν(z) =

1
z
.

With B(ν) = max{0, supsupp(ν)}= 1, we have, from Proposition 2(iii), that m+(ν) = limz−→1 Kν(z) = 1.
Consider µ = ν•2, then we have Kµ(z) = Kν•2(z) = 2Kν(z) = 2/z and Gµ(z) = z

z2−2 . So µ = 1
2 δ−

√
2 +

1
2 δ√2.

With B(µ) = max{0, supsupp(µ)} =
√

2, we have that m+(µ) = limz−→
√

2 Kµ(z) =
√

2. This implies that
m+(ν

•2) ̸= 2m+(ν). So there is no “simple formula” for m+ under Fermi convolution power. For this reason,
in Theorem 1 we restrict ourselves to m close enough to αm0(ν).

3. APPROXIMATION OF FERMI-POISSON CSK FAMILY

According to [11], the Fermi-Poisson distribution is given by

µλ =

(
1
2
+

1
2
√

4λ +1

)
δx1 +

(
1
2
− 1

2
√

4λ +1

)
δx2 , (20)

where λ = m0(µ)≥ 0, x1 = λ + 1
2 −
√

λ + 1
4 and x2 = λ + 1

2 +
√

λ + 1
4 .

If λ = 0, then µ0 = δ0. Since in the theory of CSK families we deal with non degenerate probability
measure, so we suppose that λ > 0.

We have for all θ ∈ (θ−(µλ ),θ+(µλ )) =

(
−∞, 1

λ+ 1
2+
√

λ+ 1
4

)
,

Mµλ
(θ) =

−1+θ +θλ

−1−λ 2θ 2 +θ(1+2λ )
. (21)

Also, the mean function is given by

kµλ
(θ) =

λ (λθ −1)
−1+θ +θλ

. (22)

One see that −1 + θ + θλ = 0 for θ = 1
1+λ

> 1
λ+ 1

2+
√

λ+ 1
4

. So equation (23) is well defined for all θ ∈(
−∞, 1

λ+ 1
2+
√

λ+ 1
4

)
. Let ψµλ

(.) the inverse of the function kµλ
(.). It is given by

ψµλ
(m) =

m−λ

λ (m−λ )+m
, (23)

for all m ∈ (m−(µλ ),m+(µλ )) = kµλ
((θ−(µλ ),θ+(µλ ))) =

(
λ 2

1+λ
,

[
1
2 +
√

λ + 1
4

]2
)

.
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From (6), the pseudo-variance function of the family K (µλ ) is given, for m ∈

(
λ 2

1+λ
,

[
1
2 +
√

λ + 1
4

]2
)

, by

Vµλ
(m) =

m
m−λ

(m− (m−λ )2), (24)

and from (7), the variance function of the family K (µλ ) is given by

Vµλ
(m) = m− (m−λ )2, (25)

The CSK family generated by µλ is given by

K (µλ ) =

{
Q(m,µλ )(dx) =− (m2 +λ 2 −m(1+2λ ))(1+

√
1+4λ )

λ (−1−4λ +
√

1+4λ )+m(1+4λ +
√

1+4λ )
δx1

+
(m2 +λ 2 −m(1+2λ ))(−1+

√
1+4λ )√

1+4λ (m+λ −m
√

1+4λ +λ
√

1+4λ )
δx2 : m ∈

(
λ

2/(1+λ ),
[
1/2+

√
λ +1/4

]2
)}

.

For N ∈ N∗, and 0 < λ < N, consider

νN =

(
1− λ

N

)
δ0 +

λ

N
δ1.

We have that for all θ ∈ (−∞,1),

MνN (θ) = 1− λ

N
+

λ/N
1−θ

and kνN (θ) =
λ

N −Nθ +λθ
.

As the inverse of the function kνN (.), for all m ∈ (0,1) = kνN ((−∞,1)), we have ψνN (m) = λ−Nm
m(λ−N) . Formula

(6) implies that the pseudo-variance function of the two sided CSK family K (νN) is VνN (m) = Nm2(m−1)
λ−Nm .

With m0(νN) = λ/N, we see from (7) that the variance function of the two sided CSK family K (νN) is
VνN (m) = m(1−m). The CSK family generated by νN is given by

K (νN) =
{

Q(m,νN)(dx) = (1−m)δ0 +mδ1 : m ∈ (0,1)
}
.

THEOREM 2. For N ∈ N∗ and 0 < λ < N, let

νN =

(
1− λ

N

)
δ0 +

λ

N
δ1,

and consider the CSK family generated by ν•N
N , with mean m0(ν

•N
N ) = λ and variance function V

ν•N
N
(.). We

have that
Q(m,ν•N

N )
N→+∞−−−−→ Q(m,µλ ), in distribution.

for all m in a neighborhood of λ . In particular we get the Fermi Poisson limit theorem: ν•N
N

N→+∞−−−−→ µλ , in distribution.

Proof. We have that m0(ν
•N
N ) = λ = m0(µλ ).

There exists ε > 0 such that (m−(ν
•N
N ),m+(ν

•N
N ))∩ (m−(µλ ),m+(µλ )) = (λ − ε,λ + ε). For all m ∈

(λ − ε,λ + ε) ∫
xQ(m,ν•N

N )(dx) = m =
∫

xQ(m,µλ )(dx).
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Using variance functions and formula (19), we have for all m ∈ (λ − ε,λ + ε)

V
ν•N

N
(m) = NVνN (m/N)+m(m−Nm0(νN))(1/N −1)+m0(νN)(N −1)(m−Nm0(νN))

= m(1−m/N)+m(m−λ )(1/N −1)+λ (1−1/N)(m−λ )
N→+∞−−−−→ m− (m−λ )2 =Vµλ

(m).

This together with Proposition 1 applied to the sequence of measure Q(m,ν•N
N ) gives that, for all m ∈ (λ −

ε,λ + ε), Q(m,ν•N
N )

N→+∞−−−−→ Q(m,µλ ), in distribution. In particular for m = λ we get the Fermi Poisson limit

theorem, that is, ν•N
N

N→+∞−−−−→ µλ in distribution.
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