
THE PUBLISHING HOUSE
OF THE ROMANIAN ACADEMY

PROCEEDINGS OF THE ROMANIAN ACADEMY, Series A
Volume 24, Number 1/2023, pp. 11–18

DOI: 10.59277/PRA-SER.A.24.1.02

ISOLATED TOUGHNESS FOR FRACTIONAL (((222,,,bbb,,,kkk)))–CRITICAL COVERED GRAPHS

Sizhong ZHOU1, Quanru PAN1, Lan XU2

1 Jiangsu University of Science and Technology, School of Science,

Zhenjiang, Jiangsu 212100, China
2 Changji University, Department of Mathematics, Changji, Xinjiang 831100, China

Sizhong ZHOU, E-mail: zsz cumt@163.com
Corresponding author: Quanru PAN, E-mail: qrpana@163.com

Lan XU, E-mail: xulan6400@163.com

Abstract. A graph G is called a fractional (a,b,k)-critical covered graph if for any Q ⊆ V (G) with |Q| = k,
G−Q is a fractional [a,b]-covered graph. In particular, a fractional (a,b,k)-critical covered graph is a fractional
(2,b,k)-critical covered graph if a = 2. In this work, we investigate the problem of a fractional (2,b,k)-critical
covered graph, and demonstrate that a graph G with δ (G) ≥ 3+ k is fractional (2,b,k)-critical covered if its
isolated toughness I(G)≥ 1+ k+2

b−1 , where b and k are nonnegative integers satisfying b ≥ 2+ k
2 .
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1. INTRODUCTION

We discuss only finite undirected simple graphs G with vertex set V (G) and edge set E(G). For any
x ∈V (G), we let dG(x) denote the degree of x in G and NG(x) denote the set of vertices adjacent to x in G. Let
X be a vertex subset of G. We write δ (G)=min{dG(x) : x∈V (G)}, dG(X)= ∑

x∈X
dG(x) and NG(X)=

⋃
x∈X

NG(x).

We use G[X ] to denote the subgraph of G induced by X , and use G−X to denote the subgraph derived from G
by removing vertices in X together with the edges adjacent to vertices in X . We use i(G) to denote the number
of isolated vertices of G, and define

p j(G) = |{x : x ∈V (G),dG(x) = j}|.

Obviously, p0(G) = i(G). We denote by Kn the complete graph of order n. Let r be a real number. Recall that
⌊r⌋ is the greatest integer with ⌊r⌋ ≤ r.

Yang, Ma and Liu [23] first introduced the definition of isolated toughness, denoted by

I(G) = min
{ |X |

i(G−X)
: X ⊆V (G), i(G−X)> 1

}
if G is not a complete graph; otherwise, I(G) = +∞.

Let a,b and k be three nonnegative integers satisfying 1 ≤ a ≤ b. A spanning subgraph F of G is called
an [a,b]-factor if every vertex of F admits the degree between a and b. In particular, if a = b = r, then an
[a,b]-factor is an r-factor, which is an r-regular spanning subgraph.

https://www.doi.org/10.59277/PRA-SER.A.24.1.02
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Let h(e) ∈ [0,1] be a function defined on E(G) and dh
G(x) = ∑

e∈Ex

h(e), where Ex = {e : e = xy ∈ E(G)}.

Then we call dh
G(x) the fractional degree of x in G, and call h an indicator function if a ≤ dh

G(x) ≤ b holds for
every x ∈ V (G). Let Eh = {e : e ∈ E(G),h(e) > 0} and Gh be a spanning subgraph of G with E(Gh) = Eh.
Then we call Gh a fractional [a,b]-factor. In particular, if a = b = r, then a fractional [a,b]-factor is a fractional
r-factor. A graph G is called a fractional [a,b]-covered graph if for every e ∈ E(G), G has a fractional [a,b]-
factor Gh satisfying h(e) = 1. In particular, a fractional [a,b]-covered graph is called a fractional r-covered
graph if a = b = r. A graph G is called a fractional (a,b,k)-critical covered graph if for any Q ⊆ V (G) with
|Q|= k, G−Q is a fractional [a,b]-covered graph. In particular, a fractional (a,b,k)-critical covered graph is a
fractional (r,k)-critical covered graph if a = b = r.

Kawarabayashi and Ozeki [8] discussed some problems on 2-factors in graphs. Chen [1] and Matsuda [15]
studied the existence of [2,b]-factors in graphs. Wang and Zhang [18, 19], Wu [22], Zhou, Bian and Pan [32],
Zhou, Sun and Liu [36], Zhou and Bian [31] derived some sufficient conditions for graphs to admit [1,2]-factors.
Kouider and Lonc [9] investigated the relationship between stability number and [a,b]-factors of graphs. For
some recent advances on the problem of factors in graphs, we refer to Nenadov [16], Chiba [2], Zhou and
Liu [33], Zhou [29], Sun and Zhou [17], Katerinis [7], Zhou and Liu [34], Zhou, Wu and Bian [37], Zhou,
Wu and Xu [39], Wang and Zhang [20]. Ma and Liu [14] presented an isolated toughness condition for graphs
having fractional 2-factors. Katerinis [6] showed some results on fractional r-factors in regular graphs. Liu
and Zhang [12] investigated the existence of fractional r-factors in graphs. More recently related results on
fractional factors in graphs can be referred to Zhou [27,30], Liu, Yu and Zhang [11], Gao, Guirao and Chen [3],
Gao, Wang and Dimitrov [5], Gao, Liang and Chen [4], Wang and Zhang [21], Zhou, Liu and Xu [35]. Yuan
and Hao [24] got a degree condition for a graph to be a fractional [a,b]-covered graph. Yuan and Hao [25]
put forward two sufficient conditions for the existence of fractional [a,b]-covered graphs. Lv [13] presented a
degree condition for the existence of fractional (a,b,k)-critical covered graphs. Zhou, Wu and Liu [38] derived
an independence number and connectivity condition for the existence of fractional (a,b,k)-critical covered
graphs. Zhou [26, 28] claimed two neighborhood conditions for a graph being a fractional (a,b,k)-critical
covered graph.

Motivated by above results, we derive an isolated toughness condition for a graph being a fractional (2,b,k)-
critical covered graph, which will be shown in Section 2.

2. MAIN RESULT AND ITS PROOF

In order to verify our main result in this paper, we first present the following lemmas.

LEMMA 2.1 ([10]). Let 0 ≤ a ≤ b be two integers. Then a graph G is a fractional [a,b]-covered graph if
and only if

a|Y |−dG−X(Y )≤ b|X |− ε(X ,Y )

for every X ⊆V (G), where Y = {x : x ∈V (G)\X ,dG−X(x)≤ a} and ε(X ,Y ) is defined by

ε(X ,Y ) =


2, i f X is not independent,
1, i f X is independent and there is an edge joining

X and V (G)\ (X ∪Y ), or there is an edge e = xy
joining X and Y such that dG−X(y) = a f or y ∈ Y,

0, otherwise.

The following lemma is equivalent to Lemma 2.1.

LEMMA 2.2. Let 0 ≤ a ≤ b be two integers. Then a graph G is a fractional [a,b]-covered graph if and only
if

a−1

∑
j=0

(a− j)p j(G−X)≤ b|X |− ε(X ,Y )
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for every X ⊆V (G), where Y = {x : x ∈V (G)\X ,dG−X(x)≤ a} and ε(X ,Y ) is same as that of Lemma 2.1.

Next, we show our main result in this paper.

THEOREM 2.1. Let b and k be nonnegative integers such that b ≥ 2 + k
2 , and let G be a graph. If

δ (G)≥ 3+ k and

I(G)≥ 1+
k+2
b−1

,

then G is a fractional (2,b,k)-critical covered graph.

Proof. Theorem 2.1 clearly holds for a complete graph. In what follows, we consider the case when G is
not a complete graph.

Let W ⊆V (G) with |W |= k. We write H = G−W . In order to verify Theorem 2.1, it suffices to show that
H is a fractional [2,b]-covered graph. To the contrary, we assume that H is not a fractional [2,b]-covered graph.
Then it follows from Lemma 2.2 that

2p0(H −X)+ p1(H −X)> b|X |− ε(X ,Y ) (1)

for some X ⊆V (H), where Y = {x : x ∈V (H)\X ,dH−X(x)≤ 2}.
If |X | ≤ 1, then by (1) and ε(X ,Y )≤ |X |, we have

2p0(H −X)+ p1(H −X)> b|X |− ε(X ,Y )≥ b|X |− |X |= (b−1)|X | ≥ 0. (2)

Moreover, it follows from δ (G)≥ 3+ k, H = G−W with |W |= k, and |X | ≤ 1 that

p0(H −X) = p1(H −X) = 0,

which contradicts (2). Henceforth, we shall consider the case when |X | ≥ 2.
Note that ε(X ,Y )≤ 2. From (1), we get

2p0(H −X)+ p1(H −X)> b|X |− ε(X ,Y )≥ b|X |−2. (3)

CLAIM 1. k+|X |+ 1
2 p1(H−X)

p0(H−X)+ 1
2 p1(H−X)

< 1+ k+2
b−1 .

Proof. According to (3), |X | ≥ 2 and b ≥ 2+ k
2 , we have

k+ |X |+ 1
2 p1(H −X)

p0(H −X)+ 1
2 p1(H −X)

= 1+
k+ |X |− p0(H −X)

p0(H −X)+ 1
2 p1(H −X)

≤ 1+
k+ |X |

p0(H −X)+ 1
2 p1(H −X)

< 1+
k+ |X |

1
2 b|X |−1

= 1+
2
b
+

2k+ 4
b

b|X |−2

≤ 1+
2
b
+

2k+ 4
b

2b−2

= 1+
k+2
b−1

.

Claim 1 is proved. 2

Let Q = {x : x ∈V (H)\X ,dH−X(x) = 1}. Then |Q|= p1(H −X). Further, we write

E(Q) = {e = xy : x,y ∈ Q},
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E(Q,NH−X(Q)) = {e = xy : x ∈ Q,y ∈ NH−X(Q)\Q},

D = {x : x ∈ Q∩NH−X(Q)}.

Let M(Q) = {x1y1,x2y2, · · · ,xtyt} be a maximum matching in G[Q]. Put

Q 1
2
= {xi : 1 ≤ i ≤ t}.

The following proof will be divided into four cases.
Case 1. E(Q) = /0 and E(Q,NH−X(Q)) = /0.
In this case, it is obvious that Q = /0. Hence, we derive p1(H−X) = 0. Combining this with (3) and |X | ≥ 2,

we possess

i(H −X) = p0(H −X)>
1
2

b|X |−1 ≥ b−1 ≥ 1 (4)

Note that H = G−W with |W | = k. Thus, i(G−W ∪X) = i(H −X) > 1. Using (4), |X | ≥ 2 and I(G) ≥
1+ k+2

b−1 , we have

1+
k+2
b−1

≤ I(G)≤ |W ∪X |
i(G−W ∪X)

=
k+ |X |

i(H −X)

<
k+ |X |

1
2 b|X |−1

=
2
b
+

2k+ 4
b

b|X |−2

≤ 2
b
+

2k+ 4
b

2b−2
=

k+2
b−1

< 1+
k+2
b−1

,

which is a contradiction.

Case 2. E(Q) = /0 and E(Q,NH−X(Q)) ̸= /0.
Obviously, |NH−X(Q)| ≤ p1(H −X). Then using (3) and |X | ≥ 2, we get

i(G−W ∪X ∪NH−X(Q)) = i(H −X ∪NH−X(Q))≥ i(H −X)+ p1(H −X)

≥ 1
2
(2i(H −X)+ p1(H −X)) =

1
2
(2p0(H −X)+ p1(H −X))

>
1
2

b|X |−1 ≥ b−1 ≥ 1. (5)

It follows from (3), (5), |X | ≥ 2, b ≥ 2+ k
2 and I(G)≥ 1+ k+2

b−1 that

1+
k+2
b−1

≤ I(G)≤ |W ∪X ∪NH−X(Q)|
i(G−W ∪X ∪NH−X(Q))

=
k+ |X |+ |NH−X(Q)|

i(G−W ∪X ∪NH−X(Q))

≤ k+ |X |+ p1(H −X)

i(H −X)+ p1(H −X)

=
k+ |X |+ p1(H −X)

p0(H −X)+ p1(H −X)

= 1+
k+ |X |− p0(H −X)

p0(H −X)+ p1(H −X)

= 1+
k+ |X |− p0(H −X)

2p0(H −X)+ p1(H −X)− p0(H −X)
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≤ 1+
k+ |X |

2p0(H −X)+ p1(H −X)

< 1+
k+ |X |

b|X |−2

= 1+
1
b
+

k+ 2
b

b|X |−2

≤ 1+
1
b
+

k+ 2
b

2b−2

= 1+
1
b
+

bk+2
2b(b−1)

< 1+
2
b
+

bk+2
b(b−1)

= 1+
k+2
b−1

,

which is a contradiction.

Case 3. E(Q) ̸= /0 and E(Q,NH−X(Q)) = /0.

In this case, we easily see that |Q 1
2
|= 1

2 p1(H −X) and

i(G−W ∪X ∪Q 1
2
) = i(H −X ∪Q 1

2
)≥ i(H −X)+

1
2

p1(H −X)

= p0(H −X)+
1
2

p1(H −X)>
1
2

b|X |−1 ≥ b−1 ≥ 1 (6)

by (3), |X | ≥ 2 and b ≥ 2+ k
2 ≥ 2.

According to (6), Claim 1 and I(G)≥ 1+ k+2
b−1 , we obtain

1+
k+2
b−1

≤ I(G)≤
|W ∪X ∪Q 1

2
|

i(G−W ∪X ∪Q 1
2
)

=
k+ |X |+ |Q 1

2
|

i(G−W ∪X ∪Q 1
2
)

≤
k+ |X |+ 1

2 p1(H −X)

p0(H −X)+ 1
2 p1(H −X)

< 1+
k+2
b−1

,

which is a contradiction.

Case 4. E(Q) ̸= /0 and E(Q,NH−X(Q)) ̸= /0.

Subcase 4.1. |E(Q)|> |E(Q,NH−X(Q))|.

Let N = (NH−X(Q) \D)∪Q′, where Q′ ⊆ Q 1
2
. Then there exists Q′ ⊆ Q 1

2
such that |N| = ⌊1

2 p1(H −X)⌋
and i(H −X ∪N)≥ i(H −X)+ 1

2 p1(H −X) = p0(H −X)+ 1
2 p1(H −X). Thus, we have

i(G−W ∪X ∪N) = i(H −X ∪N)≥ p0(H −X)+
1
2

p1(H −X)

>
1
2

b|X |−1 ≥ b−1 ≥ 1 (7)
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by (3), |X | ≥ 2 and b ≥ 2+ k
2 ≥ 2. Using (7), Claim 1 and I(G)≥ 1+ k+2

b−1 , we get

1+
k+2
b−1

≤ I(G)≤ |W ∪X ∪N|
i(G−W ∪X ∪N)

=
k+ |X |+ ⌊1

2 p1(H −X)⌋
i(G−W ∪X ∪N)

≤
k+ |X |+ 1

2 p1(H −X)

p0(H −X)+ 1
2 p1(H −X)

< 1+
k+2
b−1

,

which is a contradiction.

Subcase 4.2. |E(Q)| ≤ |E(Q,NH−X(Q))|.
Let N = Q 1

2
∪Q′, where Q′ ⊆ NH−X(Q)\D. Then there exists Q′ ⊆ NH−X(Q)\D such that |N|= ⌊1

2 p1(H−
X)⌋ and i(H −X ∪N)≥ i(H −X)+ 1

2 p1(H −X) = p0(H −X)+ 1
2 p1(H −X). Thus, we derive

i(G−W ∪X ∪N) = i(H −X ∪N)≥ p0(H −X)+
1
2

p1(H −X)

>
1
2

b|X |−1 ≥ b−1 ≥ 1 (8)

by (3), |X | ≥ 2 and b ≥ 2+ k
2 ≥ 2. It follows from (8), Claim 1 and I(G)≥ 1+ k+2

b−1 that

1+
k+2
b−1

≤ I(G)≤ |W ∪X ∪N|
i(G−W ∪X ∪N)

=
k+ |X |+ ⌊1

2 p1(H −X)⌋
i(G−W ∪X ∪N)

≤
k+ |X |+ 1

2 p1(H −X)

p0(H −X)+ 1
2 p1(H −X)

< 1+
k+2
b−1

,

which is a contradiction. This completes the proof of Theorem 2.1. 2

If k = 0 in Theorem 2.1, then we get the following corollary.

COROLLARY 2.1. Let b ≥ 2 be an integer, and let G be a graph. If δ (G)≥ 3 and

I(G)≥ 1+
2

b−1
,

then G is a fractional [2,b]-covered graph.

If b = 2 in Corollary 2.1, then we get the following corollary.

COROLLARY 2.2. Let G be a graph. If δ (G)≥ 3 and I(G)≥ 3, then G is a fractional 2-covered graph.

3. REMARK

Next, we show that the condition I(G)≥ 1+ k+2
b−1 in Theorem 2.1 is best possible in some sense, namely, it

cannot be replaced by I(G)≥ 1+ k+2
2b−1 . To check this, we consider a graph G constructed from Kk+2, (2b−1)K1
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and K2b−1 as follows: letting V ((2b− 1)K1) = {x1,x2, · · · ,x2b−1} and V (K2b−1) = {y1,y2, · · · ,y2b−1}, where
k ≥ 0 and b ≥ 2+ k

2 are two integers. We first join every vertex xi to the vertex yi with the same subscript i, and
then join every vertex xi to all the vertices of Kk+2. Then we easily see

I(G) =
|Q|

i(G−Q)
=

k+2+2b−1
2b−1

= 1+
k+2

2b−1
,

where Q =V (Kk+2)∪V (K2b−1).
Set D = V (Kk) ⊆ V (Kk+2), G′ = G−D and X = V (Kk+2) \V (Kk). Then ε(X ,Y ) = 2 since X is not an

independent set, where Y = {x : x ∈V (G′)\X ,dG′−X(x)≤ 2}. Hence, we deduce

2p0(G′−X)+ p1(G′−X) = 2b−1 > 2b−2 = b|X |− ε(X ,Y ).

In light of Lemma 2.2, G′ is not fractional [2,b]-covered, that is, G is not fractional (2,b,k)-critical covered.
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