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Abstract. The Multichannel Quantum Defect Theory and the Reduced R-Matrix are formally related and
physically equivalent; both theories describe not only the internal dynamics but also the interactions in space
of eliminated channels. One proves the Multichannel Quantum Defect Theory is Reduced Collision Matrix
describing effect of eliminated channel on observed ones.

The multichannel resonances originating in bound or quasistationary single particle states are described
in terms of Reduced Collision Matrix. The single particle states are defined by Bound- or Quasistationary- State
equation in the eliminated channel, relating channel logarithmic derivative to R-Matrix.
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1. INTRODUCTION

The collision of an electron with the atomic electronic core or the scattering of a nucleon on the atomic
nucleus, usually, results into multiparticle excitations producing a resonance of a compound system, followed
by its decay in reaction channels. Both in the electron-atom collisions and in nucleon-nucleus reactions, these
multichannel resonances are described by poles of R-Matrix elements.

The resonances originating in single particle states, either in electron- atom collision or in nucleon-nucleus
scattering, are approached in quite different descriptions. For example, the single-particle resonance in nuclear
scattering is described, in R-Matrix Theory, by a perturbative method (Lane and Thomas [1]). By perturbative
residual interactions, the single particle state is subject to transitions to actual states of compound system and to
couplings to other reaction channels. The R-matrix becomes a series of resonant terms, collected, with statistical
assumptions, into giant single particle resonance formula. The electron, involving single particle Rydberg state
in an atomic collision, “avoids” its wave function mixing with that of inner multielectron core, because it is
spatially located far-away from that core. In the electron-atom scattering the effect of inner multielectron core
on Rydberg electrons is rather studied by means of a global parameter, historically called “Quantum Defect”;
the electron-atom scattering is described by the Multichannel Quantum Defect Theory (MQDT), (Seaton [2]).
Both these (electron or nucleon) types of resonances have in common the persistence of the single-particle
motion in a complex system with multiparticle excitations.

In this work the single- particle (electron or nucleon) state in a multichannel system. are not more de-
scribed by a R-Matrix pole (specific for resonances originating in multiparticle excitations) but rather by a
natural method for incorporating a single particle state in R-Matrix Theory. Firstly, one establishes a formal
relation and a physical equivalence of the MQDT and the Reduced R-Matrix; both concepts describe, in ad-
dition to internal dynamics, the interactions in space of eliminated channels. The electron Rydberg state or
the nucleon single particle state, both from an eliminated (invisible or unobserved) channel, are described by
R-Matrix bound or quasistationary state condition. The coupling of single particle (electron or nucleon) bound
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or quasistationary state from eliminated channel to the observed open channels results into a multichannel res-
onance. The zero-energy single particle states result, by coupling to open observed channels, into threshold
effects with corresponding spectroscopic strengths.

2. MULTICHANNEL QUANTUM DEFECT AND REDUCED R-MATRIX

The Multichannel Quantum Defect Theory (MQDT) is based on possibility of separating the effects of long
and short range interactions between an electron and an atomic core [2]. The effect of short range interactions,
within the core, are very complex but, nevertheless, can be concisely represented by a global parameter, named
Quantum Defect. The long range interactions, (represented by simple fields as e.g. the Coulomb or dipolar
ones), are treated analitically by extensive use of Coulomb or other Special Functions. On the other hand
the general assumptions of the MQDT are similar to those of R-Matrix Theory, [3]. Developing this idea
and by using only basic properties of Whittaker and Coulomb functions, Lane [3] has extracted MQDT from
Wigner’s R-Matrix Theory. A relationship between K-Matrix, on one side, and R-Matrix, boundary condition
parameters and Coulomb functions, on other side, was established. This relation was then rewritten, by using
specific boundary conditions, in a K-Matrix form of MQDT.

In the present work one proves that the MQDT is rather equivalent to the Wigner Reduced R-Matrix. The K-
Matrix form of the MQDT is obtained from R-Matrix Theory by a procedure for relating the collision matrices
defined for the multichannel system both above and below threshold. This approach proves that the essential
aspects of the MQDT originate in variation across threshold of the logarithmic derivative of the eliminated
channels. According to this approach, the MQDT provides a relationship between the collision matrices of
two multichannel reaction systems with the same inner core but differing only in interactions of the eliminated
channels.

The Collision Matrix U is parametrized [1] in terms of the R-Matrix, the Coulombian hard-sphere phase
shifts Φ, the logarithmic derivative L and its imaginary part, penetration factor P,

U = e−iΦWe−iΦ = e−iΦ[1+2iP1/2(R−1 −L)−1P1/2]e−iΦ (1)

Another form suitable for the present purpose is

W = 1−2iP1/2L−1P1/2 +2iP1/2L−1(L−1 −R)−1L−1P1/2 (2)

The penetration factor matrix P is a diagonal matrix with dimension equal to number of open channels. Below
threshold, P = ||Paδab|| = PN for N open channels, (a,b = 1,2, · · · ,N); it will select the corresponding N ×N
submatrix of the whole (R−1 −L)−1 matrix. Above threshold, a new open channel n = N + 1 is added to the
reaction system. The dimension of penetration factor P and of U (W ) square Collision Matrix rises by one. The
R-Matrix and the logarithmic derivative L, corresponding to whole reaction system, are represented both below
and above threshold by square matrices of dimension (N +1).

The Collision Matrix elements are constructed, both below (<) and above (>) n-threshold, by assuming
that the only changing parameter across threshold is the logarithmic derivative of the channel n (or a group n of
degenerate channels)

(L−1 −R)> =

(
L−1

N −RN −RNn

−RnN L−1
n>−Rn

)
= (L−1

> −R) (3a)

(L−1 −R)< =

(
L−1

N −RN −RNn

−RnN L−1
n<−Rn

)
= (L−1

< −R) (3b)

Relating (L−1
< −R)−1 to (L−1

> −R)−1 by an identity for sub-matrix blocks

(L−1
< −R)−1

N = (L−1
> −R)−1

N − (L−1
> −R)−1

Nn
1

−(L−1
n>−L−1

n<)
−1 +(L−1

n>−R)−1
nn

(L−1
> −R)−1

nN
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it results into a formula connecting Collision Matrices defined above W> and below W<, n-threshold

W<
N = W>

N −W>
Nn

1
−(∆Ln)⋆/(∆Ln)+W>

nn
W>

nN (4)

In this derivation it is assumed that Ln< is real and ∆Ln = Ln>−Ln< is logarithmic derivative variation across
threshold of the n-channel. The modulus one quantity (∆Ln)

⋆/(∆Ln) allows to define a “defect scattering phase
shift” δn, a “Collision Matrix element” Uδ

nn and a corresponding “K-Matrix element” τnn = tanδn, tan(δn−φn)=
Im∆Ln/Re∆Ln,

(∆Ln)
⋆/(∆Ln) = e2iΦne−2iδn (5a)

Uδ
nn = e2iδn =−1+2i(τnn + i)−1 (5b)

The Collision Matrix form of the MQDT

U<
N = U>

N −U>
Nn

1
U>

nn − (Uδ
nn)

−1U>
nN (6)

results into a corresponding K-Matrix form, [4]

U =−1+2i(K + i)−1 (7a)

K<
N = KN −KNn[τnn +Knn]

−1KnN (7b)

One can prove, by evaluating ∆Ln near threshold for Coulomb field [5, 6], that the δn phase shift is related to
effective quantum number of MQDT, δn = π|η |. For s-wave scattering on external (outside inner core) neutral
fields, ∆Ln is proportional to (1+ i) and δn = π/4. [7].

Obtaining the U-Matrix form of MQDT, we have, in next step, to relate it to the Reduced R-Matrix. In
general theory the R-Matrix has a dimension equal to total number of channels, whether open or closed. The
Reduced R-Matrix has (in our case) dimension equal to number of open channels; it takes into account the
eliminated closed channel through an additional term. For obtaining a compact R-Matrix form of the MQDT,
(analogous to the K-Matrix one (7b)), one uses the R-Matrix parametrization of the Collision Matrix below
threshold

W<
N = 1−2iP1/2

N L−1
N P1/2

N +2iP1/2
N L−1

N (L−1
N −R<

N )−1L−1
N P1/2

N (8)

the explicit form of the R<
N term has to be determined. One defines a similar R-Matrix parametrization for the

diagonal matrix (∆Ln)/(∆Ln)
⋆, with Ln = L>

n

(∆Ln)/(∆Ln)
⋆ = 1−2iPnL−1

n +2iPnL−2
n (L−1

n −ρn)
−1 (9)

One can remark that (W<
N −L⋆

NL−1
N )−1 can be regarded (up to diagonal matrices P1/2

N L−1
N ) as a linear function

of R<
N while the right side of MQDT form of W , (4), as a submatrix (corresponding to the system of N open

channels) of the difference [
(W>−L⋆L−1)N+1 − (W δ⋆−L⋆

δ
L−1

δ
)N+1

]−1

N

The Collision Matrix (W>)N+1 describes both open (a,b) and threshold (n) channels while (W δ⋆−L⋆
δ
L−1

δ
)N+1

has only a non zero element refering to n = N +1 channel, defined by (9). By this remark and by using (4) one
obtains the explicit form of R<

N matrix defined below threshold

R<
N = RN −RNn

1
Rn −ρn

RnN (10)
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As from (10) the term ρn is identified to be (L<
n )

−1, (ρn = 1/L<
n ), one obtains that the R-Matrix parametrization

of the MQDT, R<
N , is just Wigner Reduced R-Matrix, as defined in Lane and Thomas [1]. The physical basis

for this equivalence is analogy between the two concepts; both describe not only the internal dynamics but also
the interaction from eliminated closed channels.

3. ON SINGLE PARTICLE STATES IN MULTICHANNEL REACTIONS

The resonances in electron multichannel scattering on atoms or ions originate either in multielectron ex-
citations of electronic inner core or from excitation of Rydberg far-away located states. According to Lane
R-Matrix terminology [3] they are called “inner resonances” and “channel resonances”, respectively. Adopting
this terminology we could have in mind another processes in Scattering Physics, as e.g. nucleon scattering on
nuclei. The “inner” and “channel” resonances do correspond to “compound nucleus”- and to “single particle”-
resonances, respectively.

In Lane’s approach to MQDT, [3], both the inner and Rydberg resonances are described in similar ways; the
Rydberg resonances are represented by a meromorphic term added to inner resonances genuine R-Matrix. The
meromorphic function χ , describing Rydberg states, is constructed in terms of Whittaker function and specific
boundary condition for n-closed channel. The matrix sum (R+ χ) is then inverted, by retaining only block
sub-matrix refering to open channels.

In the present approach the inner multichannel resonances are described by R-Matrix while the chan-
nel resonances are related to Ln logarithmic derivative and to n-channel Reduced R-Matrix. The multichan-
nel resonances originating in single particle (bound or quasistationary) states are approached here within the
MQDT/Reduced R-Matrix framework.

The MQDT description of (n)-channel resonances results into a formal constraint on denominator in for-
mula (4), namely −(∆Ln)

⋆/(∆Ln)+W>
nn = 0. This condition, implicitly, contains assumption the other Colli-

sion Matrix terms W>
N , W>

Nn, W>
nN are monotone energy dependent near (or across) n-channel threshold. This is

questionable, the only quantity which does not feel threshold energy dependance is the R-Matrix. The Colli-
sion Matrix W> terms are dependent on n-channel logarithmic derivative L>

n which, in principle, could exhibit
a strong energy dependance near threshold or a non-monotone one for shape resonances. Moreover these Col-
lision Matrix terms have an implicit dependance on Rnn-Matrix element and this implies that effects originating
in eliminated n-channel are present not only in denominator of (4) but also in the other W> Collision Matrix
terms.

In Lane’s approach [3] this aspect is avoided; the description of resonances is done in terms of R-Matrix (for
inner resonances) and of a meromorphic function χ (for channel resonances). This way the inner and channel
resonances become mixed in the Collision Matrix.

In the present framework the approach is quite opposite; one has to separe the effects originating in the
two groups of channels in order to have a physical insight on phenomena developing in n-closed channel. The
MQDT formulae for Collision Matrix have to be recast in forms in which this separation is explicit; this goal
could be realized in terms of the Reduced Collision Matrix, a concept similar to Reduced R- or K- Matrix.

The Reduced Collision Matrix is the submatrix WN(UN) of the Collision Matrix which refers to retained
(N) channels, but by taking into account the effect of eliminated (n)-channel. It consists from Collision Matrix
W 0

N(U
0
N) which describes the “bare” retained channels (N), uncoupled to eliminated (n) channel,

W 0
N = 1−2iP1/2

N L−1
N P1/2

N +2iP1/2
N L−1

N (L−1
N −RN)

−1L−1
N P1/2

N (11)

and from a term ∆WN describing this coupling. The Reduced Collision Matrix evaluated above (>) n-threshold
is [4]

W>
N = W 0

N +∆W>
N

∆W>
N = W>

Nn(−L>∗
n /L>

n +W>
nn)

−1W>
nN (12)
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W>
nn = 1−2iPnL−1

n +2iPnL−2
n (L−1

n −Rnn)
−1 (13)

Rnn = Rnn −RnN(RNN −L−1
N )−1RNn

For boundary conditions used by Lane [3], the L∗
n/Ln modulus one quantity is expressed in terms of coulombian

hard-sphere phase-shifts, −L∗
n/Ln = exp(2iΦn), and

U>
N =U0

N +U>
Nn(1+U>

nn)
−1U>

nN (14)

By Reduced Collision Matrix procedure, the MQDT Collision Matrix (4) becomes

W<
N = W 0

N +∆W<
N

∆W<
N = W>

Nn
1

−(L>
n )

∗/(L>
n )+W>

nn
W>

nN
1/L>

n −Rnn

1/L<
n −Rnn

(15)

i.e. the MQDT is Reduced Collision Matrix for negative energies (closed channel) expressed in terms of positive
energy quantities (W>, L>) and also of quantities specifying eliminated closed channel (logarithmic derivative
L<

n and Reduced R-Matrix element Rnn ) The effective term ∆WN of Reduced Collision Matrix, valid both
below and above n-threshold, is

∆WN =
1
2i
(W 0

N −L∗
NL−1

N )P−1/2
N LN

RNn(L−1
n −Rnn)

−1RnN (16)

LNP−1/2
N (W 0

N −L∗
NL−1

N )

where for ∆WN superscripts > or < one has to insert the corresponding logarithmic derivatives L>
n or L<

n ,
respectively.

In next paragraphs we will discuss single particle resonances of multichannel (electron or nucleon) scatter-
ing in terms of Reduced Collision Matrix (16), which describes the two groups of channels by well-separated
terms.

Below threshold, a pole in U<
N Collision Matrix elements could be obtained from the condition R−1

nn =

L<
n = S(−)

n , (S(−)
n - shift function). In non-coupling limit, Rnn reduces to single channel R-Matrix element

Rnn. Or this is just bound state condition of the R-Matrix Theory, [1]; a bound state appears at that energy at
which the internal (R−1

nn ) and external S(−)
n logarithmic derivatives do match. This result is a R-Matrix proof

that the single particle state from a closed channel does induce resonance in competing open channels of the
multichannel system.

The standard form of the MQDT was derived only for (bound states in) eliminated closed channels; ex-
tended to positive energy eliminated channels the corresponding states should be quasistationary ones. A pole
in UN is now obtained by a condition which is analog to the bound state one, R−1

nn = Ln; the logarithmic
derivative Ln is the corresponding, at positive energy, of the shift function S(−)

n defined for negative energy. Ac-
cording to R-Matrix theory, the quasistationary (Siegert) state is defined by condition |1−RL| = 0 (Lane and
Thomas [1], p. 297). The outgoing wave at infinity corresponds to quasistationary state decay. This condition
yields a set of complex eigenenergies which determines the level’s energy and width [8]. A quasistationary
state originating in an eliminated channel induces a quasiresonant structure in other open competing channels.
Apparently (see, for example, [9]), this situation (multichannel resonance originating in a quasistationary single
particle state from an unobserved channel) was not discussed until now. In the literature [10] one reports on
the “channel coupling pole” observed in numerical experiments for multichannel scattering; a single channel
pole may be driven to physical region of the complex energy plane when channel coupling becomes effective.
It could be of interest to relate the “channel coupling resonances” and the multichannel resonances originating
in quasistationary states.

The n-channel related effects in retained channels (N) are represented by the product RNn(L−1
n −Rnn)

−1RnN ,
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resembling to additional term of RN Reduced R-Matrix, eq. (13). The only difference is the ‘bare’ R-Matrix
element Rnn of eliminated n-channel is here replaced by its effective counterpart Rnn; the n-channel Reduced
Rnn - Matrix element does include also rescattering effects from complementary open channels. The physical
implication of the Reduced R-Matrix element Rnn, instead of uncoupled n-channel R-matrix Rnn, is obtained by
writting the open retained channels component (RNN −L−1

N )−1 in terms of the T 0
N transition matrix for open un-

coupled channels, W 0
N = 1+2iT 0

N . By using natural boundary conditions, LN = iPN , one obtains (RNN −L−1
N )−1

= P1/2
N (T 0

N − i)P1/2
N . The Reduced Rnn - Matrix element of the eliminated channel becomes

Rnn = Rnn +RnNP1/2
N (i−T 0

N )P
1/2
N RNn (17)

The single particle level’s (real or complex) energy, E0
n , in absence of coupling to open channels, is defined

by bound or quasistationary state condition L−1
n −Rnn = 0. The actual level’s energy implies the level acquires

a shifth, ∆n = −RnNP1/2
N ReT 0

N P1/2
N RNn, and width, Γn = RnNP1/2

N (1− ImT 0
N )P

1/2
N RNn, due to coupling to open

channels. One has to remark that both level’s shift and width depend not only on coupling strength RNn but
also on rescattering T 0

N in open channels. The effect of potential scattering in open channels is more visible for
the level’s width. The Unitarity Condition, ImTaa = (T T †)aa results into (1− ImTaa) = (1−∑

N
b=1 |Tab|2) < 1.

The corresponding component of the width is compressed by term ∑
N
a=1 Rna(1−∑

N
b=1 |T 0

ab|2)Ran. A bound or
a quasistationary state, originating in an eliminated channel, induces a resonance in open competing channels.
Both the width and level shift are determined by channels couplings and by rescattering in open channels; a
broad quasistationary state (from eliminated channel) results in a smaller width resonance (in retained channel).
Multichannel resonances originating in quasistationary or bound single particle states and ‘Channel Coupling
Resonances’ have similar width property.

4. ON ELECTRON RYDBERG STATES IN MULTICHANNEL SYSTEMS

The single particle resonance equation, L−1
n −Rnn = 0, can be approached in two different ways, either

refering to Reduced R-Matrix element, as above, or to Logarithmic Derivative. The logaritmic derivative itself
could have a resonant form, e.g. as that proposed in Nuclear Physics [11], resulting in a generalization of Cusp
Theory. In Atomic Physics an energy-dependent logarithmic derivative, with poles on real axis, is used for
studying electron Rydberg states, at negative energy. The (Reduced) R-Matrix element of eliminated channel
could be then considered as non-dependent on energy. By applying the resonance equation to electron Rydberg
states, one should obtain basic results of Quantum Defect Theory.

The electron (closed channel, n = e) logarithmic derivative is given by [5, 6]

Le =−cotπ
√

e2
1e2

2m/2h̄2(Eπ −E)

(e1, e2 and m – channel particles electric charges and reduced mass). The Rydberg states, in absence of inner
core, are defined by equation L−1

e = 0. The level equation L−1
e = 0 results into energy of Rydberg states, defined

with respect to Eπ threshold energy, Eπ −En= (1/n2) e2
1e2

2m/2h̄2, with n an integer number.
If quantum defect, due to inner core, is taken into account then the principal quantum number n is replaced

by effective quantum number ν resulting into level-shift, which, at its turn, is related to quantum defect µ by
relation ν = n− µ (Seaton [2]). The electron logarithmic derivative below threshold becomes Le< = cotπµ .
In non-coupling limit, the Reduced R-Matrix becomes the single channel R-Matrix element Ree. The bound
state condition, for one electron closed channel, according to L−1

e< −Ree = 0, is now tanπµ = Ree; it relates
one-channel quantum defect, µ , to Rydberg channel R-Matrix element, Ree.

The resonance equation of Rydberg channel implies basic results of Quantum Defect Theory. The logarith-
mic derivative above threshold is [5, 6] L>

e = i; the electron penetration factor is one Pe = 1 and its shift-factor
is zero Se = 0. The scattering phase-shift in open electron channel δe, defined according to R-Matrix by
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tanδe = ReePe/(1−ReeSe), becomes tanδe = Ree. The two relations involving Ree matrix element results in the
Seaton theorem, δe = πµ , relating the scattering phase shift above threshold to the quantum defect from spectra
below threshold.

The only strong dependent on energy of Reduced Collision Matrix ∆WN is the closed Rydberg electron
channel term (L−1

e −Ree). The energy dependence is contained in logarithmic derivative; below threshold
Le< = – cotπν , above threshold Le> = i. The Ree matrix element of multielectron inner core is considered as
nearly constant in threshold region. The energy average (over mean spacing of levels D) of the effective term,
below threshold, ∆WN is calculated following [5] One obtains (L−1

e< −Ree) = (L−1
e> −Ree), that the averaged

effective term and averaged Collision Matrix, are continous across threshold, ∆W<
N = ∆W>

N and W<
N = W>

N .
(Gailitis [12]). The Seaton’ and Gailitis’ theorems are basic ones in Quantum Defect Theory.

The coupling of the closed channel e to open channel a results in the resonance equation

tanπν +Ree = 0. (18)

This relation results into definition of ’complex quantum defect’ µ̃ in terms of Reduced R-Matrix element,
Ree, of electron Rydberg channel, tanπµ̃ = Ree. The transition between two channels is represented by the Rae

matrix elements; Pa is penetration factor for open elastic channel and T 0
aa is transition amplitude W 0

aa = 1+2iT 0
aa

for elastic channel uncoupled to Rydberg channel. The additional term in the complex quantum defect, µ̃ = µ

+ δ + iγ , is in weak coupling limit

δ + iγ = ReaP1/2
a [−ReT 0

aa + i(1− ImT 0
aa)]P

1/2
a Rae . (19)

The level shift, due to inert inner core, is given by the one-channel quantum deffect µ , Ree = tanπµ . The
additional terms, δ ∼ (ReT 0

aa) and γ ∼ (1− ImT 0
aa), are related both to interchannel transitions as well as to

potential scattering in the electron elastic channel; the last one implies resonance’s width diminution, (ImT 0
aa >

0) .
The Rydberg states, with energies En −Eπ = −α2/n2, from the electron closed channel will induce in

the electron (elastic) scattering channel set of resonances shifted to new energy positions Eν = Eπ −α2/ν2.
The resonance equation, tanπ(ν − n)+Ree = 0, results, in weak coupling limit, in the complex energy , (see
also [13], [2]),

Eν = Eπ −
α2

ν2 = En −
2
π

α2

n3 (ReRee + i ImRee). (20)

The open channel level shift and resonance width are determined by reduced R-matrix or complex quantum
defect of Rydberg channel. The resonance width is subject to compression due to potential scattering in open
channel. The resonance’s width compression is a general property of multichannel resonances originating in
single particle states.

5. CONCLUSIONS

The Multichannel Quantum Defect Theory and the Reduced R-Matrix are formally related and physically
equivalent; both theories describe not only the internal dynamics but also the interactions in space of eliminated
channels.

The multichannel resonances originating in bound or quasistationary single particle states are described in
terms of Reduced R-Matrix or Reduced Collision Matrix. This last concept is analogue of Reduced R-matrix,
describing in terms of Collision Matrix the effect of eliminated channel on observed ones. By effective compo-
nents of Reduced R-(U-) Matrix one takes into account the coupling and the rescattering from complementary
channels. A Single Particle Resonance Equation is obtaind by relating the channel logarithmic derivative to
Reduced R-Matrix element. Application of Single Particle Resonance Equation to Multichannel Collisions is
illustrated for electron scatterings near threshold.
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The single particle state, either bound or quasistationary, is defined in this work by matching the R-matrix
to reciprocal of channel logarithmic derivative. A suitable framework for this problem is Reduced Collision
Matrix which deals with Reduced R-Matrix. One obtains a singularity in the effective term of the Reduced
Collision Matrix, relating the (eliminated) channel logarithmic derivative to corresponding Reduced R-Matrix.
By effective component of Reduced R-Matrix one takes into account the coupling of and the rescattering from
complementary open channels.

The coupling of single particle channel to complementary channels of reaction system will result into a
multichannel resonance, described by a pole of effective collision matrix. This pole is solution of an equation
similar to that of single particle state but now R-matrix is replaced by reduced R-matrix, thus taking into
account channels couplings and rescattering. The life-time of multichannel resonance increases, as result of
open channels couplings and rescattering. Formally this results in compression of decay width.

The resonance equation, defined in terms of reduced R-matrix element and channel logarithmic deriva-
tive, can be approached either by parametrization of reduced R-matrix element, as in nuclear case, or by pole
parametrization of channel logarithmic derivative, as in case of electrons in Rydberg channels. The study of
electron Rydberg states according to Resonance equation results into essentials of Quantum Defect Theory
(Seaton and Gailitis theorems). The application of the formalism to atomic multichannel scattering problems
aims to evince the extent of this approach to multichannel reactions.
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