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Abstract. In this paper, the problem of consensus tracking control for a class of second-order leader-following
nonparametric uncertain multi-agent systems, which perform a given repetitive task over a finite interval with
arbitrary initial error. By means of learning control and initial shift rectifying, a first-order attractor control
algorithm is presented.In the tracking process, the proposed algorithm simultaneously rectifies all the initial
state shifts, and after enough iterations, the all following multi-agents’ states perfectly track the leader’s state
in the preset time interval. Finally, simulation results demonstrate the effectiveness of the learning control
algorithm.
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1. INTRODUCTION

A multi-agent system is composed of multiple agents performing the same task. Each agent can only
communicate with adjacent agents to obtain local state information. At runtime, each agent collaborates with
each other to complete a complex task through this local communication mode. In recent years, due to the
wide applications of multi-agent, more and more scholars have begun to study the interaction and cooperative
control of multi-agent [1, 2]. For multi-agent systems, the fundamental problem is the consensus tracking
control [3,4]. The so-called consensus problem refers to that each agent in the multi-agent system achieves the
same output or the same state through mutual communication and cooperation. The research results is widely
used in many fields, such as robot formation, distributed neural network and UAV control [5].

At the beginning of the 21st century, some scholars tried to use Lyapunov method to solve the consensus
problem of multi-agent systems [6–14]. Reference [8] analyzed the consensus problem of multi-agent systems
by using Laplacian matrix. In [10], a terminal sliding mode algorithm is proposed to solve the tracking problem
of multi-robot systems. Compared with linear multi-agent systems and parameterized nonlinear multi-agent
systems, the tracking control of nonparametric nonlinear multi-agent systems is more difficult. References [11]
and [12] solve the consensus tracking control problem of nonparametric nonlinear multi-agent systems with
lipschitz continuity, while [13] and [14] complete the consensus tracking control for such systems by utilizing
neural network and fuzzy system.

In recent years, the iterative learning control(ILC) method has been applied to achieve the consensus track-
ing for multi-agent system [15, 16]. Repeatedly executing the same operation is an important feature of ILC,
and when utilizing the ILC method [17,18], it is generally required that the initial state offset of each iteration
is equal to zero, which is impossible in practice due to positioning accuracy and measurement error, etc. In
fact, the control system cannot achieve complete error-free tracking throughout the control process, and can
only reach the practical complete tracking (PCT) in some specified interval. Obviously, in the PCT case, the
system allows the initial state deviation of not zero. When the initial deviation is not zero, the system can
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achieve the complete tracking in the specified interval by initial shift rectifying [19, 20]. In [21], for a class
of uncertain nonlinear systems with unknown virtual control coefficients, a fuzzy adaptive fixed time control
scheme based on event triggered is proposed, which can guarantee that all signals of the controlled system
are bounded and the tracking error can converge to a small neighborhood of the origin in a fixed time and the
convergence time is independent of the initial state. Relying on the structural characteristics of the solution of
linear differential equation, [22] designs initial state shifts rectifying schemes for high-order nonlinear system
with arbitrary initial state shifts, which can ensure that the systems achieve complete tracking over the specified
interval under the premise that the system input gain is unknown and the learning parameters strictly depend
on the system state. Some scholars try to use fuzzy control strategy to rectify the initial state shifts [23]. In
repeated environment, [24] and [25] propose consensus control algorithms for high-order and second-order
nonlinear multi-agent systems (MAS) under alignment condition with both parametric and nonparametric sys-
tem uncertainties, respectively. A distributed adaptive ILC method by using backstepping to design with the
composite energy function (CEF) structure is proposed in [24]. [25] implements the consensus control prob-
lems of MAS with unknown control gain and uncertain disturbance by referencing the Nussbaum-type function
and the neural networks.

This paper studies the solution of the consensus tracking problem for a class of second-order leader-
following nonparametric uncertain multi-agent systems with arbitrary initial state errors. By using initial state
rectifying, a consensus learning control algorithm is presented to realize consensus tracking of second-order
multi-agent. Finally, a simulation example is given to verify the effectiveness of the proposed algorithm.

The main contributions of this work are as follows:
(1) This paper studies the nonparametric uncertain multi-agent system with arbitrary initial state shifts,

which indicate that the systems do not have alignment conditions. Therefore, it is a meaningful work to design
a tracking control scheme for an uncertain nonlinear multi-agent system.

(2) The idea of utilizing the attractor function to rectify the initial state shifts is realized for the multi-agent
systems. After rectifying the state shifts, the proposed algorithm can enable the system to achieve complete
tracking in the specified interval.

2. PROBLEM FORMULATION

Consider a class of second-order leader-following multi-agent systems, which contain one leader-agent and
n follower-agents. Dynamics of the j th ( j = 1,2, . . . ,n) agent at the kth iteration is described as{

ẋ1
j,k(t) = x2

j,k(t),

ẋ2
j,k(t) = f j,k(t)+g j,k(t) ·u j,k(t)

(1)

where t ∈ [0,T ]; k = 1,2, . . . is the index of iteration; xi
j,k ∈ R is the ith state variable of the agent j at the

kth iteration; u j,k(t) ∈ R is the control input to be designed of the agent j at the kth iteration; f j,k(t) =
f j(x1

j,k(t),x
2
j,k(t), t), g j,k(t) = g j(x1

j,k(t),x
2
j,k(t), t) are unknown nonlinear functions that meet certain conditions.

(The aforementioned variables can be abbreviated as xi
j,k(i = 1,2), u j,k, f j,k, g j,k).

Remark 1. The structure of the system model (1) is a widely discussed form referred to Brunovsky canonical
form. For complex dynamic systems, nonparametric uncertainty is the main uncertainty factor. Nonparametric
uncertain dynamic models are widely used in unmanned aerial vehicles, aircraft and spacecraft.

The leader-agent satisfies the following requirements{
ẋ1

0(t) = x2
0(t),

ẋ2
0(t) = u0(t)

(2)

where u0(t) (abbreviated as u0) is unknown but certain, xi
0(t)(i = 1,2) (abbreviated as xi

0(i = 1,2)) maintains
the same properties during each iteration.
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This paper aims to design a novel controller u j,k for multi-agent system with arbitrary initial state xi
j,k(0)(i=

1,2), so that each follower-agent can achieve consensus tracking with the leader-agent in the specified in-
terval [tp,T ] (0 < tp < T ) after enough iterations, that is, lim

k→∞

(x1
j,k(t)− x1

0(t)) = 0, lim
k→∞

(x2
j,k(t)− x2

0(t)) = 0,

j = 1,2, . . . ,n, for t ∈ [tp,T ].
To facilitate the discussion of the main result, we introduce the tracking error of the agent j at the kth

iteration as {
e j,k(t) = x1

j,k(t)− x1
0(t),

ė j,k(t) = x2
j,k(t)− x2

0(t).
(3)

And, the relative tracking error between the agent j and the agent l at the kth iteration is defined as

e jl,k(t) = x1
j,k(t)− x1

l,k(t) = [x1
j,k(t)− x1

0(t)]− [x1
l,k(t)− x1

0(t)] = e j,k(t)− el,k(t). (4)

If two agents are adjacent, e jl,k plays an important role in achieving consensus tracking.
For simplicity, let xxx1

k = (x1
1,k,x

1
2,k, . . . ,x

1
n,k)

T , xxx2
k = (x2

1,k,x
2
2,k, . . . ,x

2
n,k)

T , uuuk = (u1,k,u2,k, . . . ,un,k)
T , xxx1

0 =

(x1
0,x

1
0, . . . ,x

1
0)

T , xxx2
0 = (x2

0,x
2
0, . . . ,x

2
0)

T , uuu0 = (u0,u0, . . . ,u0)
T , eeek = (e1,k,e2,k, . . . ,en,k)

T , then the overall models
can be represented as 

eeek = xxx1
k − xxx1

0,

ėeek = xxx2
k − xxx2

0,

ëeek = fff k +gggkuuuk −uuu0

(5)

where fff k = [ f1(x1
0 +e1,k,x2

0 + ė1,k, t), f2(x1
0 +e2,k,x2

0 + ė2,k, t), . . . , fn(x1
0 +en,k,x2

0 + ėn,k, t)]T , gggk = diag{g1(x1
0 +

e1,k,x2
0 + ė1,k, t),g2(x1

0 + e2,k,x2
0 + ė2,k, t), . . . ,gn(x1

0 + en,k,x2
0 + ėn,k, t)}.

The topology connection between the n follower-agents can be conveniently described by a simple and
undirected graph G(V,E,A), with V = {v1,v2, . . . ,vn} denotes the set of the n agents, E ⊆ V ×V is the set of
edges, and A = (ai j) ∈ Rn×n represents the weighted adjacency matrix. (v j,vl) ∈ E indicates that information
can flow between agent j and agent l. The element a jl = al j > 0 if (v j,vl) ∈ E, otherwise a jl = 0, and a j j = 0
(because G is simple which means there are no repeated edges and no self loops) . Then the Laplacian matrix
of the weighted graph is defined as

L = D−A (6)

where D = diag{d1,d2, . . . ,dn}, and di = ∑
n
j=1 ai j, i = 1,2, . . . ,n. Meanwhile, there are some agents connected

to the leader, and the connection weight between agent i and the leader is denoted by bi ( bi > 0, if agent i is
connected to the leader, otherwise bi = 0), i = 1,2, . . . ,n. Define B = diag{b1,b2, . . . ,bn}. Let M = L+B for
simplicity. Assume that the graph G of the multi-agent systems is connected, and at least one agent is connected
to the leader, that is, at least one bi > 0.

The next lemma [3] is given for M .

LEMMA 1 . Let M = L+B, where L is the Laplacian matrix associated with an undirected graph G, which
contains n vertices, B = diag{b1,b2, . . . ,bn}(b j ≥ 0, j = 1,2, . . . ,n). If there is at least one bi > 0, then M is
positive definite.

Assumption 1. The initial state x1
j,k(0),x

2
j,k(0) are arbitrary but not infinite, in other words, the initial error

of the system eeek(0), ėeek(0) can be arbitrary value but bounded.

Remark 2. It only needs to satisfy the bounded condition, without the need for the exact boundary value. It
is pointed out that most of existing work only considers the agents under the alignment conditions of second- or
higher-order nonlinear dynamics with uncertainty. This paper deals with nonparametric uncertain multi-agent
systems with arbitrary initial state errors, on which, to the best of authors’ knowledge, very little research has
been done. Therefore, this paper can be regarded as a useful supplement to current literature.
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Assumption 2. f j(v,w, t) and g j(v,w, t) satisfy the Lipschitz condition with respect to v and w, that is, for all
j(= 1,2, . . . ,n), and ∀v1,v2,w1,w2 ∈ R,

| f j(v1,w, t)− f j(v2,w, t)| ≤ α
1
j |v1 − v2|, (7)

| f j(v,w1, t)− f j(v,w2, t)| ≤ α
2
j |w1 −w2|, (8)

|g j(v1,w, t)−g j(v2,w, t)| ≤ β
1
j |v1 − v2|, (9)

|g j(v,w1, t)−g j(v,w2, t)| ≤ β
2
j |w1 −w2|, (10)

where α1
j ,α

2
j ,β

1
j ,β

2
j are unknown but fixed nonnegative constants. Therefore,

| f j(v1,w1, t)− f j(v2,w2, t)| ≤α
1
j |v1 − v2|+α

2
j |w1 −w2|, (11)

|g j(v1,w1, t)−g j(v2,w2, t)| ≤β
1
j |v1 − v2|+β

2
j |w1 −w2|. (12)

Assumption 3. g j,k(t)> 0, and there is a continuous function gL j,k(t) = gL j(x1
j,k,x

2
j,k, t), satisfies

0 < gL j,k(t)≤ g j,k(t),∀ j,∀k. (13)

Remark 3. Due to the uncertainty of functions f j,k(t), g j,k(t), the control law and the parameter update laws
should strictly depend on the state, and the above two assumptions are the only conditions that will be used
for those related to f j,k(t), g j,k(t). The Lipschitz conditions are to limit the speed of functions change, so as to
ensure that the functions will not grow indefinitely. The nonnegativity of gL j,k(t) implies the control direction
for all agents is certain.

Definition 1 [22]. Consider the following differential equation

ψ̇(t)+ cψ(t)+ r(t) = 0, (14)

where ψ(t),r(t) ∈ R, and c is a constant. If there is ψ(t) = 0, ψ̇(t) = 0 for t ≥ t1, then r(t) is called the first-
order attractor rectifying function. If there is only ψ̇(t) = 0, then r(t) is called the zero-order attractor rectifying
function. We can choose r(t) as follows

r(t) = φ(t)exp(−c(t − t0)+ψ(t0)). (15)

Solve the differential equation Eqn. (14), and obtain

ψ(t) =(ψ(t0)− exp(ψ(t0))
∫ t

t0
φ(τ)dτ) · exp(−c(t − t0)). (16)

The derivative of ψ(t) is given by

ψ̇(t) =− (ψ(t0)− exp(ψ(t0))
∫ t

t0
φ(τ)dτ) · cexp(−c(t − t0))

− exp(ψ(t0)) ·φ(t)exp(−c(t − t0)), t ∈ [t0, t1]. (17)

When t ≥ t1, in order to ensure that ψ̇(t) = 0 and ψ(t) = 0, the function φ(t) is required to satisfy the following
conditions 

φ(t) = 0, t < t0, t ≥ t1,
φ(t0) =−(ψ̇(t0)+ cψ(t0))exp(−ψ(t0)),∫ t1

t0 φ(τ)dτ = ψ(t0)exp(−ψ(t0)),
limt→t−1

φ(t) = 0.

(18)
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Remark 4. The second equation of Eqn. (18) is to ensure that when t = t0, the left and right sides of Eqn. (16)
are equal to ψ(t0), and the ones of Eqn. (17) are equal to ψ̇(t0), so as to be consistent with the initial conditions.
The third equation of Eqn. (18) is to ensure that ψ(t) = 0 and ψ̇(t) = 0, when t = t1, in order to make r(t)
rectify the shifts of ψ(t) and ψ̇(t) at the same time.

Remark 5. In particular, when c = 0, Eqn. (14) can be simplified to ψ̇(t) = −r(t). In this case, it is easy
to find a zero-order attractor rectifying function such that ψ̇(t) = 0 ( Just let ψ̇(t) = 0, and do not care about
the value of ψ(t) , that is, ψ(t) may or may not be equal to zero). For instance, we can choose r(t) as r(t) =
−ψ̇(t0) for t = t0, r(t) = 0 for t ≥ t1, r(t) transits smoothly from −ψ̇(t0) to 0 for t ∈ [t0, t1].

Remark 6. According to the above definition and solution procedure, the continuity and differentiability of
ψ(t) are strictly dependent on φ(t), so φ(t) should not only be continuous but also smooth.

The next definition and lemma are given for convenience of subsequent convergence analysis.

Definition 2 [22]. The saturation function sat(p, p̄1, p̄2) is defined by

sat(p, p̄1, p̄2) =


p̄1, p > p̄1,

p, p̄2 ≤ p ≤ p̄1,

p̄2, p < p̄2,

(19)

where p̄1 and p̄2 are corresponding upper and lower bounds. For ppp = (p1, p2, . . . , pn)
T ∈ Rn, sat(ppp, p̄1, p̄2)

represents the above operation is performed on each component pi(i = 1,2, . . .) of ppp, that is,

sat(ppp, p̄1, p̄2) = (sat(p1, p̄1, p̄2),sat(p2, p̄1, p̄2), · · · ,sat(pn, p̄1, p̄2))T (20)

LEMMA 2 [22]. Let a be a real number, and a = sat(a, p̄1, p̄2), then

(a− sat(p, p̄1, p̄2))(p− sat(p, p̄1, p̄2))≤ 0. (21)

Notation 1. The notations used throughout the paper are defined as follows. The symbol | · | is defined by
|aaa|= (|a1|, |a2|, . . . , |an|)T for any aaa = (a1,a2, . . . ,an)

T .

3. CONTROLLER DESIGN

At the kth iteration, the consensus error among the agent j and other agents is defined as follows

ξ j,k(t) =
n

∑
i=1

a ji · e ji,k(t)+b j · e j,k(t). (22)

Let ξξξ k(t) = [ξ1,k(t),ξ2,k(t), . . . ,ξn,k(t)]T (abbreviated as ξξξ k), then ξξξ k = (L+B)eeek = Meeek. It follows that the
consensus error satisfies {

ξ̇ξξ k = Mėeek = M(xxx2
k − xxx2

0),

ξ̈ξξ k = Mëeek = M( fff k +gggkuuuk −uuu0).
(23)

Remark 7. By Assumption 1, the initial errors eeek(0), ėeek(0) of the system are arbitrary but bounded, hence
the initial values of the consensus errors ξξξ k(0), ξ̇ξξ k(0) are bounded.
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Define the sliding mode error function [23] as follows{
σ j,k(t) = ξ̇ j,k(t)+ cξ j,k(t)+ r j,k(t),
σ j,k(0) = 0,

(24)

for all j = 1,2, . . . ,n, t ∈ [0,T ], and

r j,k(t) = φ j,k(t)exp(−ct +ξ j,k(0)), (25)

where φ j,k(t) is given by

φ j,k(t) = h j,kt2 + p j,kt +q j,k. (26)

The parameters of φ j,k(t) need to satisfy Eqn. (18), hence,

1
3

h j,kt3
p +

1
2

p j,kt2
p +q j,ktp = ξ j,k(0)exp(−ξ j,k(0)), (27)

q j,k =−(ξ̇ j,k(0)+ cξ j,k(0))exp(−ξ j,k(0)), (28)

h j,kt2
p + p j,ktp +q j,k = 0. (29)

Solve the above equations to obtainh j,k
p j,k
q j,k

=

1
3 t3

p
1
2 t2

p tp

t2
p tp 1
0 0 1

−1ε1
j,k
0

ε2
j,k

 , (30)

where ε1
j,k = ξ j,k(0)exp(−ξ j,k(0)), ε2

j,k =−(ξ̇ j,k(0)+ cξ j,k(0))exp(−ξ j,k(0)). Let

σσσ k(t) = [σ1,k(t),σ2,k(t), . . . ,σn,k(t)]T , (31)

rrrk(t) = [r1,k(t),r2,k(t), . . . ,rn,k(t)]T , (32)

which are abbreviated as σσσ k,rrrk, then {
σσσ k = ξ̇ξξ k + cξξξ k + rrrk,

σσσ k|t=0 = 0.
(33)

Therefore, the derivative of σσσ k is

σ̇σσ k = ξ̈ξξ k + cξ̇ξξ k + ṙrrk = M( fff k +gggkuuuk −uuu0 + cėeek +M−1ṙrrk). (34)

Remark 8. In order to achieve the control objectives, we introduce the sliding mode error function σσσ k.
According to the definition of the attractor rectifying function and the characteristics of its parameters, when
σσσ k converges to zero, it can ensure that the consensus error converges to zero in the specified interval [tp,T ] by
utilizing the initial state shifts rectifying.

Define a continuously differentiable, positive definite functional Vk(t) as

Vk(t) =
1
2

σσσ
T
k (t)M

−1
σσσ k(t). (35)

Remark 9. Introducing the error rectifying function rk(t) into σk(t) has two main purposes. The first is to
make Vk(t) satisfy the condition in Babalat Lemma, i.e. Vk(0) = 0, and then prove limk→∞Vk(t) = 0 to ensure
the system convergence. Secondly, the introduction of the function rk(t) allows the system constantly rectify
state shifts in the control process, thus facilitating rapid convergence of the system.
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Taking the derivative of Vk, we obtain

V̇k =σσσ
T
k [ fff k +gggkuuuk −uuu0 + cėeek +M−1ṙrrk]

=σσσ
T
k [( fff k − fff 0)+(gggkuuuk −gggkuuu0k)+(ggg0uuu0k −ggg0uuu0)+(gggkuuu0k −ggg0uuu0k)

+ fff 0 +ggg0uuu0 −uuu0 + cėeek +M−1ṙrrk], (36)

where uuu0k is the estimate of uuu0, and

fff 0 = [ f1(x1
0,x

2
0, t), f2(x1

0,x
2
0, t), . . . , fn(x1

0,x
2
0, t)]

T , (37)

ggg0 = diag{g1(x1
0,x

2
0, t),g2(x1

0,x
2
0, t), . . . ,gn(x1

0,x
2
0, t)}. (38)

By Assumption 2, we have

σσσ
T
k ( fff k − fff 0)≤ |σσσT

k |(α1
max|eeek|+α

2
max|ėeek|), (39)

and

σσσ
T
k (gggkuuu0k −ggg0uuu0k)≤ |σσσT

k |(β̂ 1
max|eeek|+ β̂

2
max|ėeek|), (40)

where

α
1
max = max{α

1
1 ,α

1
2 , . . . ,α

1
n}, α

2
max = max{α

2
1 ,α

2
2 , . . . ,α

2
n},

β̂
1
max = max{β

1
1 ū0,1,β

1
2 ū0,2, . . . ,β

1
n ū0,n}, β̂

2
max = max{β

2
1 ū0,1,β

2
2 ū0,2, . . . ,β

2
n ū0,n},

with ū0,1, ū0,2, . . . , ū0,n is the corresponding saturation limit ( see Eqn. (43) ). The rectifying function rk(t)
defined as Eqn. (25) is continuously differentiable on [0,T ], hence each component of the vector |M−1ṙrrk| has
an upper bound ω j ≥ 0( j = 1,2, . . . ,n). Define ωωω = (ω1,ω2, . . . ,ωn)

T . By utilizing Eqns. (39) and (40), we
have

V̇k ≤|σσσT
k |(eee∗k +ωωω)+σσσ

T
k [(gggkuuuk −gggkuuu0k)+(ggg0uuu0k −ggg0uuu0)+ηηη ], (41)

where

ηηη = fff 0 +ggg0uuu0 −uuu0,

eee∗k =[e∗1,k,e
∗
2,k, . . . ,e

∗
n,k]

T = (α1
max + β̂

1
max)|eeek|+(α2

max + β̂
2
max + |c|)|ėeek|.

For the purposes of achieving consensus tracking, we now construct the iterative learning control algorithm for
the multi-agent system described by Eqn. (1)-(2) as follows

uuuk = uuu0k −uuuek −uuuωk −uuuηk −bσσσ k, (42)

uuu0k = satū0(ûuu0k), ûuu0k = satū0(ûuu0k−1)− γ1σσσ k, (43)

uuuek = (g−1
L1,ke∗1,k arctan(k2

σ1,ke∗1,k),g
−1
L2,ke∗2,k arctan(k2

σ2,ke∗2,k), · · · ,g−1
Ln,ke∗n,k arctan(k2

σn,ke∗n,k))
T (44)

ωωωk = satω̄(ω̂ωωk), ω̂ωωk = satω̄(ω̂ωωk−1)+ γ2|σσσ k|, (45)

uuuωk = (g−1
L1,kω1,k arctan(k2

σ1,kω1,k),g−1
L2,kω2,k arctan(k2

σ2,kω2,k), · · · ,g−1
Ln,kωn,k arctan(k2

σn,kωn,k))
T (46)
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ηηηk = satη̄(η̂ηηk), η̂ηηk = satη̄(η̂ηηk−1)+ γ3σσσ k, (47)

uuuηk = (g−1
L1,kη1,k arctan(k2

σ1,kη1,k),g−1
L2,kη2,k arctan(k2

σ2,kη2,k), · · · ,g−1
Ln,kηn,k arctan(k2

σn,kηn,k))
T (48)

where b is a positive constant, γ1 > 0, γ2 > 0 and γ3 > 0 are the ILC gains. uuu0k = (u0k,1,u0k,2, . . . ,u0k,n)
T ,

ωωωk = (ω1,k,ω2,k, . . . ,ωn,k)
T , ηηηk = (η1,k,η2,k, . . . ,ηn,k)

T are the ILC updating laws for uuu0, ωωω , ηηη , respectively.
ū0, ω̄ and η̄ are the saturation bounds of uuu0k, ωωωk and ηηηk, which are defined such that |u0k, j| ≤ ū0, |ω j,k| ≤ ω̄ ,
|η j,k| ≤ η̄ , j = 1,2, . . . ,n. ûuu0k = 000, ω̂ωωk = 000, η̂ηηk = 000, when k =−1.

Remark 10. Due to the topology connection between the n follower-agents and the definition of the graph
Laplacian matrix, the proposed iterative learning protocol for agent j only uses the information of itself and its
neighboring agents, which is very different from the control law proposed in [22].

4. CONVERGENCE ANALYSIS

For the control law designed in the previous section, there is the following convergence theorem. For
simplicity of presentation, variables are replaced with corresponding abbreviations during the proof process.

THEOREM 1. If the multi-agent system described by Eqns. (1)–(2) satisfies Assumptions1–3, then the de-
signed controller Eqns. (42)–(48) can make the sliding mode error function σk and energy function Vk converge
to zero uniformly on [0,T ], as k → ∞.

Proof. Consider the following Lyapunov-like function

Lk =Vk +
1

2γ1

∫ t

0
ũuuT

0kg0ũuu0kdτ +
1

2γ2

∫ t

0
ω̃ωω

T
k ω̃ωωkdτ +

1
2γ3

∫ t

0
η̃ηη

T
k η̃ηηkdτ, (49)

where ũuu0k = uuu0 −uuu0k, ω̃ωωk = ωωω −ωωωk, η̃ηηk = ηηη −ηηηk.
Define ∆Lk = Lk −Lk−1, and obtain

∆Lk =
∫ t

0
V̇kdτ +

1
2γ1

∫ t

0
(ũuuT

0kggg0ũuu0k − ũuuT
0k−1ggg0ũuu0k−1)dτ

+
1

2γ2

∫ t

0
(ω̃ωωT

k ω̃ωωk − ω̃ωω
T
k−1ω̃ωωk−1)dτ +

1
2γ3

∫ t

0
(η̃ηηT

k η̃ηηk − η̃ηη
T
k−1η̃ηηk−1)dτ −Vk−1

≤
∫ t

0
|σσσT

k |(eee∗k +ωωω)dτ +
∫ t

0
σσσ

T
k [gggk(−uuuek −uuuωk −uuuηk −bσσσ k)+ggg0(uuu0k −uuu0)+ηηη ]dτ

+
1

2γ1

∫ t

0
(ũuuT

0kggg0ũuu0k − ũuuT
0k−1ggg0ũuu0k−1)dτ

+
1

2γ2

∫ t

0
(ω̃ωωT

k ω̃ωωk − ω̃ωω
T
k−1ω̃ωωk−1)dτ +

1
2γ3

∫ t

0
(η̃ηηT

k η̃ηηk − η̃ηη
T
k−1η̃ηηk−1)dτ −Vk−1. (50)

By Eqns. (44), (46) and (48), we have

|σσσT
k |eee∗k −σσσ

T
k gggkuuuek ≤

n

∑
i=1

|σi,ke∗i,k|−
n

∑
i=1

σi,ke∗i,k arctan(k2
σi,ke∗i,k),

|σσσT
k |ωωωk −σσσ

T
k gggkuuuωk ≤

n

∑
i=1

|σi,kωi,k|−
n

∑
i=1

σi,kωi,k arctan(k2
σi,kωi,k),

σσσ
T
k ηηηk −σσσ

T
k gggkuuuηk ≤

n

∑
i=1

|σi,kηi,k|−
n

∑
i=1

σi,kηi,k arctan(k2
σi,kηi,k).
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Notice that the function arctan(z) satisfies the inequality | z | −zarctan(θz) ≤ 0.2759
θ

for any θ > 0 [22].
Therefore

|σσσT
k |eee∗k −σσσ

T
k gggkuuuek ≤

0.2759n
k2 , (51)

|σσσT
k |ωωωk −σσσ

T
k gggkuuuωk ≤

0.2759n
k2 , (52)

σσσ
T
k ηηηk −σσσ

T
k gggkuuuηk ≤

0.2759n
k2 . (53)

Substituting Eqns. (51), (52) and (53) into Eqn. (50), yields

∆Lk ≤
∫ t

0
−bσσσ

T
k gggkσσσ kdτ +

∫ t

0

0.8277n
k2 dτ +

∫ t

0
σσσ

T
k ggg0(uuu0k −uuu0)dτ

+
∫ t

0
|σσσT

k |ω̃ωωkdτ +
∫ t

0
σσσ

T
k η̃ηηkdτ +

1
2γ1

∫ t

0
(ũuuT

0kggg0ũuu0k − ũuuT
0k−1ggg0ũuu0k−1)dτ

+
1

2γ2

∫ t

0
(ω̃ωωT

k ω̃ωωk − η̃ηη
T
k−1η̃ηηk−1)dτ +

1
2γ3

∫ t

0
(η̃ηηT

k η̃ηηk − η̃ηη
T
k−1η̃ηηk−1)dτ −Vk−1. (54)

Considering ũuuT
0kggg0ũuu0k − ũuuT

0k−1ggg0ũuu0k−1, we can obtain

ũuuT
0kggg0ũuu0k − ũuuT

0k−1ggg0ũuu0k−1

=−2ũuuT
0kggg0(uuu0k −uuu0k−1)− (ũuu0k − ũuu0k−1)

T ggg0(ũuu0k − ũuu0k−1)

=−2ũuuT
0kggg0(ûuu0k −uuu0k−1)+2ũuuT

0kggg0(ûuu0k −uuu0k)− (ũuu0k − ũuu0k−1)
T ggg0(ũuu0k − ũuu0k−1). (55)

According to Lemma 2 and Eqn. (43), we have

ũuuT
0kggg0(ûuu0k −uuu0k) = (uuu0 −uuu0k)

T ggg0(ûuu0k −uuu0k)

= (uuu0 − satū0(ûuu0k))
T ggg0(ûuu0k − satū0(ûuu0k))≤ 0. (56)

Using Eqns. (43) and (56), Eqn. (55) can be reduced to

ũuuT
0kggg0ũuu0k − ũuuT

0k−1ggg0ũuu0k−1 ≤−2ũuuT
0kggg0(ûuu0k −uuu0k−1)

=−2ũuuT
0kggg0(−γ1σσσ k) =−2γ1σσσ

T
k ggg0(uuu0k −uuu0). (57)

Similarly, we derive

ω̃ωω
T
k ω̃ωωk − ω̃ωω

T
k−1ω̃ωωk−1 ≤−2ω̃ωω

T
k (ω̂ωωk −ωωωk−1)

=−2γ2|σσσT
k |ω̃ωωk, (58)

η̃ηη
T
k η̃ηηk − η̃ηη

T
k−1η̃ηηk−1 ≤−2η̃ηη

T
k (η̂ηηk −ηηηk−1)

=−2γ3σσσ
T
k η̃ηηk. (59)

Substituting the above formulas Eqns. (57)-(59) into(54), it is true that

∆Lk ≤
0.8277nt

k2 −Vk−1.
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By ∑
+∞

i=1
1
i2

=
π2

6
, the summation of ∆Lk satisfies

k

∑
i=1

∆Li = Lk −L0 ≤
0.2759π2

2
nt −

k

∑
i=1

Vi−1,

furthermore, it can be written as

0 ≤ Lk ≤ L0 +
0.2759π2

2
nt −

k

∑
i=1

Vi−1,

where L0 is nonnegative bounded. Let Sk =∑
k
i=0Vi. It is obvious that {Sk} is a nonnegative monotone increasing

sequence and satisfies Sk−1 ≤ L0 +
0.2759π2

3
nt. According to the Monotone Convergence Theorem, lim

k→∞

Sk

exists, and lim
k→∞

(((Sk −Sk−1) = 0, i.e. lim
k→∞

Vk = 0, hence lim
k→∞

σσσ k = 000. This completes the proof.

Remark 11. For agent j( j = 1,2, . . . ,n), when lim
k→∞

σ j,k = 0, from Eqns. (16) and (17), it can be seen that

ξ j,k(t) =(ξ j,k(0)− exp(ξ j,k(0)))
∫ t

0
φ j,k(τ)dτ · exp(−ct), (60)

ξ̇ j,k(t) =− (ξ j,k(0)− exp(ξ j,k(0)))
∫ t

0
φ j,k(τ)dτ · cexp(−ct)− exp(ξ j,k(0))φ j,k(t) · exp(−ct). (61)

Based on the definition of φ j,k(t), the designed controller Eqns. (42)-(48) can guarantee that

lim
k→∞

ξξξ k(t) = 0, lim
k→∞

ξ̇ξξ k(t) = 0, t ∈ [tp,T ]. (62)

Utilizing eeek = M−1ξξξ k, we can obtain that lim
k→∞

eeek(t) = 0, lim
k→∞

ėeek(t) = 0, t ∈ [tp,T ] .

Remark 12. According to Eqns. (60) and (61), if the value of c is increased, not only can the convergence
speed be accelerated, but the tracking error can also be reduced. From the definition of φ k(t), it can be seen
that when ξk(t) and ξ̇k(t) tend to zero, the rectification effect is not obvious.

5. SIMULATION RESULTS

In this section, we will verify the effectiveness of the proposed control strategy through a simulation exam-
ple. Consider a multi-agent system running repeatedly on the interval [0,T ], which contains a leader-agent and
4 follower-agents. The topology of signal transmission between the agents is shown in Fig. 1.

Fig. 1 – Topology of multi-agent system.
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Fig. 2 – Consensus errors ξ j,k(t) and ξ̇ j,k(t),k = 30.
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The dynamics of the four follower-agents are given in structure of Eqn. (1) with

ẋ1
i,k(t) = x2

i,k(t), i = 1,2,3,4
ẋ2

1,k(t) =−[1+ cos(x2
1,k(t))]cos(x1

1,k(t))+(2+ t2 + arctan(0.5x1
1,k(t))) ·u1,k(t),

ẋ2
2,k(t) =−[1+ cos(x1

2,k(t))]sin(x2
2,k(t))+ [1+0.1 · sin(x1

2,k(t))] ·u2,k(t),

ẋ2
3,k(t) =

0.2x2
3,k(t)

1+(x2
3,k(t))

2 + sin t +[0.1sin(x1
3,k(t))+0.05cos(x2

3,k(t))+1.3] ·u3,k(t),

ẋ2
4,k(t) = 3tanh(x1

4,k(t))+0.1sin2(x2
4,k(t))+ [2+0.1cos2(x2

4,k(t))] ·u4,k(t).

(63)

And the dynamic of the leader are x1
0(t) = cos(πt), x2

0(t) =−π sin(πt), ẋ2
0(t) =−π2 cos(πt). Assume that

the operation time interval of the multi-agent system is [0,2], while the interval for rectifying the state shifts is
[0,0.5], i.e. T = 2, tp = 0.5. The initial states of the follower-agents are described by

x1
1,k(0) = 1.5rand, x2

1,k(0) =−1rand,
x1

2,k(0) = 0.8rand, x2
2,k(0) =−3rand,

x1
3,k(0) =−2rand, x2

3,k(0) = 2rand,
x1

4,k(0) =−0.5rand, x2
4,k(0) = 5rand,

(64)

where rand generates the random number between 0 and 1.
We choose c = 8 in the sliding mode error function, then the parameters h j,k, p j,k,q j,k in the rectify function

r j,k(t) can be calculated by using Eqn. (30). The controller gains are selected as b = 5, γ1 = γ2 = γ3 = 10, and
the iteration number is set as 30. The simulation results are shown in Figs. 2–8.
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Fig. 3 – The leader’s trajectory and all follower-agents’
trajectories.
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Fig. 5 – The leader’s state and all follower-agents’ states.
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Fig. 6 – State errors.

Figure 2 shows the changes of the consensus errors associated with the four follower-agents at the last
iteration. It can be seen that at the initial moment, the consensus errors are obviously not equal to 0, and they
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change constantly in the interval [0, 0.5). Whereas at time tp, the state shifts have been rectified, so that the
consensus errors converge to almost 0. We can get a conclusion that at the 30th iteration, the follower-agents
can not only reach consensus with the trajectory of the leader, but also can be agreed with the velocity of the
leader.

In Figs. 3 and 5, the black solid lines represent the trajectory and state of the leader , while the red, green
and blue solid lines represent the trajectories and states of the four follower-agents at the 28th, 29th and 30th
iterations, respectively. The red, green and blue solid lines in Figs. 4 and 6, represent the tracking errors
and state errors of the four follower-agents at the 28th, 29th and 30th iterations, respectively. Although there
is significant discrepancy between the initial states of each iteration, the four follower-agents can completely
track the leader at time tp. These results show that the control law proposed in this paper can rectify arbitrarily
state shifts, so that the multi-agent system can realize consensus tracking to the leader in the specified interval.
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Fig. 7 – Tracking errors and state errors at time tp .
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Fig. 8 – Tracking errors and state errors at time 2tp.

By observing Figs. 7 and 8, we obtain that the change of tracking errors and state errors between the follower
agents and the leader is evident in 30 iterations, at time tp and 2tp, respectively. Because the initial state shifts
need to be rectified in the interval [0, tp], the change at time tp is relatively volatile, but it is smooth at time 2tp.
On the whole, tracking errors and state errors become smaller and smaller with the growth of the number of
iterations k, that is, as k approaches infinity, the tracking errors and state errors of the system eventually tend to
0.

6. CONCLUSION

This paper studied the consensus problem of a class of second-order leader-following nonparametric uncer-
tain multi-agent systems with arbitrary initial state shifts. To solve the problem, a first-order attractor controller
with the function of rectifying state shifts was proposed. Theoretical analysis showed that the controller could
make the multi-agent system track the leader-agent completely in the specified interval. Finally, an example
was given to demonstrate the effectiveness of the proposed algorithm.
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