DEGREE SUM AND RESTRICTED $\left\{P_{2}, P_{5}\right\}$-FACTOR IN GRAPHS

Guowei DAI
Nanjing Forestry University, College of Science, Nanjing, Jiangsu 210037, P.R. China
E-mail: guoweidai1990@gmail.com

Abstract

For a graph G, a spanning subgraph F of G is called a $\left\{P_{2}, P_{5}\right\}$-factor if every component of F is isomorphic to P_{2} or P_{5}, where P_{i} denotes the path of order i. A graph G is called a ($\left\{P_{2}, P_{5}\right\}, k$)-factor critical graph if $G-V^{\prime}$ contains a $\left\{P_{2}, P_{5}\right\}$-factor for any $V^{\prime} \subseteq V(G)$ with $\left|V^{\prime}\right|=k$. A graph G is called a (\{P $\left.\left.P_{2}, P_{5}\right\}, m\right)$ factor deleted graph if $G-E^{\prime}$ has a $\left\{P_{2}, P_{5}\right\}$-factor for any $E^{\prime} \subseteq E(G)$ with $\left|E^{\prime}\right|=m$. The degree sum of G is defined by $$
\sigma_{r+1}(G)=\min _{X \subseteq V(G)}\left\{\sum_{x \in X} d_{G}(x): X \text { is an independent set of } r+1 \text { vertices }\right\} .
$$

In this paper, using degree sum conditions, we demonstrate that
(i) G is a $\left(\left\{P_{2}, P_{5}\right\}, k\right)$-factor critical graph if $\sigma_{r+1}(G)>\frac{(3 n+4 k-2)(r+1)}{7}$ and $\kappa(G) \geq k+r$;
(ii) G is a $\left(\left\{P_{2}, P_{5}\right\}, m\right)$-factor deleted graph if $\sigma_{r+1}(G)>\frac{(3 n+2 m-2)(r+1)}{7}$ and $\kappa(G) \geq \frac{5 m}{4}+r$.

Key words: graph, path-factor, $\left\{P_{2}, P_{5}\right\}$-factor, degree sum, path factor critical graph, path factor deleted graph. Mathematics Subject Classification (MSC2020): 05C70, 05C38.

1. INTRODUCTION

In this paper, we consider only finite and undirected graph without loops or multiple edges. Throughout this paper, we consider only simple connected graphs. Let $G=(V(G), E(G))$ be a graph. We denote by $V(G)$ and $E(G)$ the vertex set and the edge set of G, respectively. For $v \in V(G)$, we use $d_{G}(v)$ and $N_{G}(v)$ to denote the degree of v and the set of vertices adjacent to v in G, respectively. If $d_{G}(v)=0$ for some vertex $v \in V(G)$, then v is said to be an isolated vertex in G. The number of isolated vertices of a graph G is denoted by $i(G)$. For any subset $S \subseteq V(G)$, let $G[S]$ denote the subgraph of G induced by S, and $G-S:=G[V(G) \backslash S]$ is the resulting graph after deleting the vertices of S from G. The number of connected components of a graph G is denoted by $\omega(G)$. We write $\kappa(G)$ for the vertex connectivity of G.

A spanning subgraph of G is a subgraph H of G such that $V(H)=V(G)$ and $E(H) \subseteq E(G)$. For a family of connected graphs \mathscr{F}, a spanning subgraph H of a graph G is called an \mathscr{F}-factor of G if its each component is isomorphic to an element of \mathscr{F}. In particular, H is called a $\left\{P_{2}, P_{5}\right\}$-factor of G if its each component is isomorphic to P_{2} or P_{5}, where P_{i} denotes the path of order i. A graph G is called a $\left(\left\{P_{2}, P_{5}\right\}, k\right)$-factor critical graph if $G-V^{\prime}$ contains a $\left\{P_{2}, P_{5}\right\}$-factor for any $V^{\prime} \subseteq V(G)$ with $\left|V^{\prime}\right|=k$. A graph G is called a $\left(\left\{P_{2}, P_{5}\right\}, m\right)$ factor deleted graph if $G-E^{\prime}$ has a $\left\{P_{2}, P_{5}\right\}$-factor for any $E^{\prime} \subseteq E(G)$ with $\left|E^{\prime}\right|=m$.

Since Tutte proposed the well-known Tutte 1-factor theorem [20], path-factors of graphs [2, 5, 6, 8, 11, 16] and path-factor covered graphs [7, 12, 22,-24] have been extensively studied. More results on graph factors are referred to the survey papers and books [3,21].

As early as 1985, Akiyama et al. [1] provided a good characterization for a graph admitting a $\left\{P_{2}, P_{3}\right\}$-factor, which is stated as follows.

THEOREM 1 (Akiyama, Avis and Era [1]). A graph G has a $\left\{P_{2}, P_{3}\right\}$-factor if and only if $i(G-S) \leq 2|S|$ for all $S \subseteq V(G)$.

For an integer $d \geq 2$, a $\left\{P_{i}: i \geq d\right\}$-factor is briefly denoted by $P_{\geq d}$-factor. Note that a graph has $P_{\geq 2}$-factors if and only if it has $\left\{P_{2}, P_{3}\right\}$-factors. Kaneko [16] gave a necessary and sufficient condition for the existence of $P_{\geq 3}$-factors. For $d \geq 4$, it is not known that whether the existence problem of $P_{\geq d}$-factors is polynomially solvable or not, though some results about such factors on special classes of graphs have been obtained (see, for example, Kano et al. [17], Ando et al. [4], and Kawarabayashi et al. [18]).

A graph F is hypomatchable if $F-x$ has a perfect matching for every $x \in V(F)$. A graph is a propeller if it is obtained from a hypomatchable graph F by adding new vertices u, v and edge $u v$, and joining u to some vertices of F. Loebal and Poljak [19] proved the following theorem.

THEOREM 2 (Loebal and Poljak [19]). Let F be a connected nontrivial graph. If F has a perfect matching, F is hypomatchable, or F is a propeller, then the existence problem of a $\left\{P_{2}, F\right\}$-factor is polynomially solvable. The problem is NP-complete for all other graphs F.

In particular, the existence problem of a $\left\{P_{2}, P_{2 d+1}\right\}$-factor is $N P$-complete for $d \geq 2$. As $\left\{P_{2}, P_{2 d+1}\right\}$ factor is a useful tool for finding large matchings, Egawa, Furuya and Ozeki [15] investigated the existence of $\left\{P_{2}, P_{2 d+1}\right\}$-factors and obtained the following theorem.

For $S \subseteq V(G)$, let $\mathscr{C}_{i}(G-S)$ be the set of components of order i in $G-S$, where integer $i \geq 1$. Write $c_{i}(G-S)=\left|\mathscr{C}_{i}(G-S)\right|$. For $0 \leq i \leq d-1$, we use $c_{<2 d}^{o}(G-S)$ to denote the number of odd components of $G-S$ with order less than $2 d$, that is, $c_{<2 d}^{o}(G-S)=\sum_{1 \leq i \leq d} c_{2 i-1}(G-S)$.

THEOREM 3 (Egawa, Furuya and Ozeki [15]). Let $d \geq 3$ be an integer, and let G be a graph. If $c_{<2 d}^{o}(G-$ $S) \leq \frac{5}{6 d^{2}}|S|$ for all $S \subseteq V(G)$, then G has a $\left\{P_{2}, P_{2 d+1}\right\}$-factor.

Recently, Egawa and Furuya [13, 14] obtained stronger sufficient conditions for $\left\{P_{2}, P_{2 d+1}\right\}$-factors with $d=2,3,4$. In particular, they proved the following theorem.

THEOREM 4 (Egawa \& Furuya [13]). A graph G has a $\left\{P_{2}, P_{5}\right\}$-factor if $3 c_{1}(G-S)+2 c_{3}(G-S) \leq$ $4|S|+1$ for all $S \subseteq V(G)$.

Now, we introduce the parameter called degree sum. If a graph G has r independent vertices, define

$$
\sigma_{r+1}(G)=\min _{X \subseteq V(G)}\left\{\sum_{x \in X} d_{G}(x): X \text { is an independent set of } r+1 \text { vertices }\right\}
$$

In this paper, we obtain two degree sum conditions for graphs to be $\left(\left\{P_{2}, P_{5}\right\}, k\right)$-factor critical graphs and ($\left\{P_{2}, P_{5}\right\}, m$)-factor deleted graphs, respectively.

2. $\left(\left\{P_{2}, P_{5}\right\}, k\right)$-FACTOR CRITICAL GRAPH

THEOREM 5. Let G be a graph of order $n \geq 2 r+k+8$, where $r \geq 1, k \geq 0$ are integers. If $\kappa(G) \geq k+r$ and $\sigma_{r+1}(G)>\frac{(3 n+4 k-2)(r+1)}{7}$, then G is a $\left(\left\{P_{2}, P_{5}\right\}, k\right)$-factor critical graph.

Proof. Let $G^{\prime}=G-V^{\prime}$ for $V^{\prime} \subseteq V(G)$ with $\left|V^{\prime}\right|=k$. In order to verify Theorem5, it suffices to prove that G^{\prime} has a $\left\{P_{2}, P_{5}\right\}$-factor. On the contrary, suppose that G^{\prime} admits no $\left\{P_{2}, P_{5}\right\}$-factor. Then by Theorem 4 , there exists $S \subseteq V\left(G^{\prime}\right)$ such that $3 c_{1}\left(G^{\prime}-S\right)+2 c_{3}\left(G^{\prime}-S\right) \geq 4|S|+2$. It follows that

$$
\begin{equation*}
c_{1}\left(G^{\prime}-S\right)+c_{3}\left(G^{\prime}-S\right) \geq c_{1}\left(G^{\prime}-S\right)+\frac{2}{3} c_{3}\left(G^{\prime}-S\right) \geq \frac{4|S|+2}{3} \tag{1}
\end{equation*}
$$

for some $S \subseteq V\left(G^{\prime}\right)$.

CLAIM 1. $|S| \geq r$.

Proof. Suppose $|S| \leq r-1$, then by $\kappa(G) \geq k+r$ and $\left|V^{\prime}\right|=k$, we have that $G^{\prime}-S=G-V^{\prime}-S$ is connected and thus $\omega\left(G^{\prime}-S\right)=1$. Then by 11 , we get

$$
\frac{4|S|+2}{3} \leq c_{1}\left(G^{\prime}-S\right)+c_{3}\left(G^{\prime}-S\right) \leq \omega\left(G^{\prime}-S\right)=1
$$

which implies $|S|=0$ and $c_{1}\left(G^{\prime}\right)+c_{3}\left(G^{\prime}\right)=\omega\left(G^{\prime}\right)=1$. It follows that $\left|G^{\prime}\right| \leq 3$, which contradicts $\left|G^{\prime}\right|=$ $n-k \geq 2 r+8$.

CLAIM 2. $c_{1}\left(G^{\prime}-S\right) \leq r$.

Proof. Assume $c_{1}\left(G^{\prime}-S\right) \geq r+1$. Then there exist at least $r+1$ isolated vertices $x_{1}, x_{2}, \ldots, x_{r+1}$ in $G^{\prime}-S$ such that $d_{G^{\prime}-S}\left(x_{i}\right)=0$ for $1 \leq i \leq r+1$. Hence, we have

$$
\begin{equation*}
d_{G}\left(x_{i}\right) \leq\left|V^{\prime}\right|+|S|=|S|+k \tag{2}
\end{equation*}
$$

for $1 \leq i \leq r+1$.
Obviously, $\left\{x_{1}, x_{2}, \ldots, x_{r+1}\right\}$ is an independent set of G. In terms of 2 and the degree condition of Theorem 5. we obtain

$$
|S|+k \geq \max \left\{d_{G}\left(x_{i}\right): 1 \leq i \leq r+1\right\} \geq \frac{\sigma_{r+1}(G)}{r+1}>\frac{3 n+4 k-2}{7}
$$

which implies

$$
\begin{equation*}
|S|>\frac{3 n-3 k-2}{7} \tag{3}
\end{equation*}
$$

It follows from (1) and (4) that

$$
\begin{aligned}
n & \geq|S|+\left|V^{\prime}\right|+c_{1}\left(G^{\prime}-S\right)+3 \times c_{3}\left(G^{\prime}-S\right) \\
& \geq|S|+k+c_{1}\left(G^{\prime}-S\right)+c_{3}\left(G^{\prime}-S\right) \\
& \geq|S|+k+\frac{4|S|+2}{3} \\
& =\frac{7|S|}{3}+k+\frac{2}{3} \\
& >\frac{7}{3} \times \frac{3 n-3 k-2}{7}+k+\frac{2}{3} \\
& =n
\end{aligned}
$$

which is a contradiction. We complete the proof of Claim 2 .
Using (1) and Claim 1, we derive

$$
c_{1}\left(G^{\prime}-S\right)+c_{3}\left(G^{\prime}-S\right) \geq \frac{4|S|+2}{3} \geq r+\frac{r+2}{3} \geq r+1
$$

which implies that $G^{\prime}-S$ admits $r+1$ components of order one or three. Let $G_{1}, G_{2}, \ldots, G_{r+1}$ be $r+1$ components of $G^{\prime}-S$, and choose vertex $x_{i} \in V\left(G_{i}\right)$ such that $d_{G_{i}}\left(x_{i}\right) \leq 2$ for $1 \leq i \leq r+1$. Obviously, $\left\{x_{1}, x_{2}, \ldots, x_{r+1}\right\}$ is an independent set of G, and $d_{G}\left(x_{i}\right) \leq k+|S|+2$ for $1 \leq i \leq r+1$. By the degree condition of Theorem 5 , we have that

$$
k+|S|+2 \geq \max \left\{d_{G}\left(x_{i}\right): 1 \leq i \leq r+1\right\} \geq \frac{\sigma_{r+1}(G)}{r+1}>\frac{3 n+4 k-2}{7}
$$

It follows that

$$
\begin{equation*}
|S|>\frac{3 n-3 k-16}{7} \tag{4}
\end{equation*}
$$

According to (1), (4), Claim 2, $r \geq 1$ and $n \geq 2 r+k+8$, we obtain

$$
\begin{aligned}
n & \geq|S|+\left|V^{\prime}\right|+3 \times\left(c_{1}\left(G^{\prime}-S\right)+c_{3}\left(G^{\prime}-S\right)\right)-2 \times c_{1}\left(G^{\prime}-S\right) \\
& \geq|S|+k+4|S|+2-2 r \\
& >5 \times \frac{3 n-3 k-16}{7}+k \\
& =\frac{15 n-8 k-80}{7}
\end{aligned}
$$

that is, $n<k+10$, which is a contradiction to that $n \geq 2 r+k+8 \geq k+10$. We complete the proof of Theorem 5.

Remark 1. Now, we show that the degree sum condition

$$
\sigma_{r+1}(G)>\frac{(3 n+4 k-2)(r+1)}{7}
$$

in Theorem 5 cannot be replaced by

$$
\sigma_{r+1}(G) \geq \frac{(3 n+4 k-7)(r+1)}{7}
$$

Let $k \geq 0$ and $r \geq 1$ be two integers, and t be a sufficiently large integer. Construct a graph $G=K_{q} \vee((r t+2 k+$ 3) K_{1}), where $q=\frac{3 r t+10 k+2}{4}$. Then G is a q-connected graph of order $n=\frac{7 r t+18 k+14}{4}$, and

$$
\frac{\sigma_{r+1}(G)}{r+1} \geq q=\frac{3 r t+10 k+2}{4}=\frac{3 n+4 k-7}{7}
$$

Let $V^{\prime} \subseteq V\left(K_{q}\right)$ with $\left|V^{\prime}\right|=k$, and $G^{\prime}=G-V^{\prime}$. We choose $S=V\left(K_{q-k}\right) \subseteq V\left(K_{q}\right)$, then we obtain

$$
c_{1}\left(G^{\prime}-S\right)+c_{3}\left(G^{\prime}-S\right)=r t+2 k+3>\frac{4(q-k)+1}{3}=\frac{4|S|+1}{3}
$$

By Theorem 4, G^{\prime} is has no $\left\{P_{2}, P_{5}\right\}$-factor, that is, G is not a $\left(\left\{P_{2}, P_{5}\right\}, k\right)$-factor critical graph.

3. $\left(\left\{P_{2}, P_{5}\right\}, m\right)$-FACTOR DELETED GRAPH

THEOREM 6. Let m and r be two integers with $r \geq 1$ and $0 \leq m \leq r-1$, and let G be a graph of order $n \geq 2 r+4 m+8$. If $\kappa(G) \geq \frac{5 m}{4}+r$ and $\sigma_{r+1}(G)>\frac{(3 n+2 m-2)(r+1)}{7}$, then G is a $\left(\left\{P_{2}, P_{5}\right\}, m\right)$-factor deleted graph .

Proof. Let $G^{\prime}=G-E^{\prime}$ for $E^{\prime} \subseteq E(G)$ with $\left|E^{\prime}\right|=m$. Then $V\left(G^{\prime}\right)=V(G)$ and $E\left(G^{\prime}\right)=E(G) \backslash E^{\prime}$. To prove Theorem 6, it suffices to verify that G^{\prime} has a $\left\{P_{2}, P_{5}\right\}$-factor. On the contrary, suppose that G^{\prime} admits no $\left\{P_{2}, P_{5}\right\}$-factor. Then by Theorem 4 , there exists $S \subseteq V\left(G^{\prime}\right)$ such that $3 c_{1}\left(G^{\prime}-S\right)+2 c_{3}\left(G^{\prime}-S\right) \geq 4|S|+2$. It follows that

$$
\begin{equation*}
c_{1}\left(G^{\prime}-S\right)+c_{3}\left(G^{\prime}-S\right) \geq c_{1}\left(G^{\prime}-S\right)+\frac{2}{3} c_{3}\left(G^{\prime}-S\right) \geq \frac{4|S|+2}{3} \tag{5}
\end{equation*}
$$

for some $S \subseteq V\left(G^{\prime}\right)$.
Next, we shall consider two cases according to the value of $c_{1}(G-S)$ and derive a contradiction in each case.

Case 1. $c_{1}(G-S) \geq r+1$.

In this case, there exist at least $r+1$ isolated vertices $x_{1}, x_{2}, \ldots, x_{r+1}$ in $G-S$ such that $d_{G-S}\left(x_{i}\right)=0$ for $1 \leq i \leq r+1$. Hence, we have

$$
\begin{equation*}
d_{G}\left(x_{i}\right) \leq d_{G-S}\left(x_{i}\right)+|S|=|S| \tag{6}
\end{equation*}
$$

for $1 \leq i \leq r+1$. Obviously, $\left\{x_{1}, x_{2}, \ldots, x_{r+1}\right\}$ is an independent set of G. Then by (6) and the degree condition of Theorem6, we have that

$$
\begin{equation*}
|S| \geq \max \left\{d_{G}\left(x_{i}\right): 1 \leq i \leq r+1\right\} \geq \frac{\sigma_{r+1}(G)}{r+1}>\frac{3 n+2 m-2}{7} \tag{7}
\end{equation*}
$$

It follows from (5) and (7) that

$$
n \geq|S|+c_{1}\left(G^{\prime}-S\right)+c_{3}\left(G^{\prime}-S\right) \geq|S|+\frac{4|S|+2}{3}=\frac{7|S|+2}{3}>\frac{3 n+2 m}{3}>n
$$

which is a contradiction.
Case 2. $c_{1}(G-S) \leq r$.
Subcase 2.1. S is not a vertex cut set of G.
In this subcase, $\omega(G-S)=\omega(G)=1$. After deleting an edge in a graph, the number of its components increases by at most 1 . Hence, if $|S| \geq \frac{3 m+2}{4}$, then it follows that

$$
\begin{aligned}
c_{1}\left(G^{\prime}-S\right)+c_{3}\left(G^{\prime}-S\right) & =c_{1}\left(G-S-E^{\prime}\right)+c_{3}\left(G-S-E^{\prime}\right) \\
& \leq \omega\left(G-S-E^{\prime}\right) \\
& \leq \omega(G-S)+m \\
& =m+1 \\
& \leq \frac{4|S|-2}{3}+1 \\
& =\frac{4|S|+1}{3}
\end{aligned}
$$

which contradicts (5).
If $1 \leq|S|<\frac{3 m+2}{4}$, then by $m \leq 2 r-1$ and $\kappa(G) \geq \frac{5 m}{4}+r$, we have

$$
\kappa(G-S) \geq \kappa(G)-|S|>\frac{5 m}{4}+r-\frac{3 m+2}{4}=\frac{m-1}{2}+r \geq m
$$

By the integrity of $\kappa(G-S)$, we get

$$
\begin{equation*}
\kappa(G-S) \geq m+1 \tag{8}
\end{equation*}
$$

It follows from (8) that $\kappa\left(G^{\prime}-S\right)=\kappa\left(G-S-E^{\prime}\right) \geq \kappa(G-S)-\left|E^{\prime}\right| \geq 1$. Hence, we derive

$$
\begin{equation*}
c_{1}\left(G^{\prime}-S\right)+c_{3}\left(G^{\prime}-S\right) \leq \omega\left(G^{\prime}-S\right)=1 \tag{9}
\end{equation*}
$$

Using (5) and $|S| \geq 1$, we obtain

$$
2 \leq \frac{4|S|+2}{3} \leq c_{1}\left(G^{\prime}-S\right)+c_{3}\left(G^{\prime}-S\right)
$$

which is a contradiction to (9).
If $|S|=0$, then by $[5$, we have

$$
\begin{equation*}
c_{1}\left(G^{\prime}\right)+c_{3}\left(G^{\prime}\right)=c_{1}\left(G^{\prime}-S\right)+c_{3}\left(G^{\prime}-S\right) \geq \frac{4|S|+2}{3}=\frac{2}{3} \tag{10}
\end{equation*}
$$

Note that $\kappa\left(G^{\prime}\right) \geq \kappa(G)-\left|E^{\prime}\right| \geq \frac{5 m}{4}+r-m \geq r$, and thus $\omega\left(G^{\prime}\right)=1$. This together with 10 implies $c_{1}\left(G^{\prime}\right)+$ $c_{3}\left(G^{\prime}\right)=\omega\left(G^{\prime}\right)=1$. Hence, G^{\prime} is a graph of order one or three, which contradicts $\left|G^{\prime}\right|=n \geq 2 r+4 m+8>3$.

Subcase 2.2. S is a vertex cut set of G.
In this subcase, we have $\omega(G-S) \geq 2$ and $|S| \geq \kappa(G) \geq \frac{5 m}{4}+r$. In terms of 5 and $m \leq r-1$, we obtain

$$
\begin{aligned}
c_{1}(G-S)+c_{3}(G-S) & \geq c_{1}\left(G^{\prime}-S\right)+c_{3}\left(G^{\prime}-S\right)-2 m \\
& \geq \frac{4|S|+2}{3}-2 m \\
& \geq \frac{-m+4 r+2}{3} \\
& =\frac{-m+r-1}{3}+r+1 \\
& \geq r+1
\end{aligned}
$$

which implies that there exist $r+1$ components of order at most three in $G-S$, denoted by $H_{1}, H_{2}, \ldots, H_{r+1}$. We choose $x_{i} \in V\left(H_{i}\right)$ with $d_{H_{i}}\left(x_{i}\right) \leq 2$ for $1 \leq i \leq r+1$. Obviously, $\left\{x_{1}, x_{2}, \ldots, x_{r+1}\right\}$ is an independent set of G. Then it follows from the degree condition of Theorem 6 that

$$
|S|+2 \geq \max \left\{d_{G}\left(x_{i}\right): 1 \leq i \leq r+1\right\} \geq \frac{\sigma_{r+1}(G)}{r+1}>\frac{3 n+2 m-2}{7}
$$

It follows that

$$
\begin{equation*}
|S|>\frac{3 n+2 m-16}{7} \tag{11}
\end{equation*}
$$

In light of (5), 11, $c_{1}(G-S) \leq r$ and $n \geq 2 r+4 m+8$, we deduce

$$
\begin{aligned}
n & \geq|S|+3 \times\left(c_{1}(G-S)+c_{3}(G-S)\right)-2 \times c_{1}(G-S) \\
& \geq|S|+3 \times\left(\frac{4|S|+2}{3}-2 m\right)-2 r \\
& =5|S|-6 m+2-2 r \\
& >5 \times \frac{3 n+2 m-16}{7}-6 m+2-2 r \\
& =\frac{15 n-32 m-66}{7}-2 r
\end{aligned}
$$

that is, $n<4 m+\frac{33+7 r}{4}$. Since $r \geq 1$, we obtain $n<4 m+\frac{33+7 r}{4} \leq 4 m+8+2 r$, which is a contradiction to that $n \geq 4 m+8+2 r$. We complete the proof of Theorem 6 .

Remark 2. Now, we show that the degree sum condition

$$
\sigma_{r+1}(G)>\frac{(3 n+2 m-2)(r+1)}{7}
$$

in Theorem 6 cannot be replaced by

$$
\sigma_{r+1}(G) \geq \frac{(3 n-2)(r+1)}{7}
$$

Let $m \geq 0$ and $r \geq 1$ be two integers, and t be a sufficiently large integer. Construct a graph $G=K_{p} \vee((r t+$ 1) $\left.K_{1} \cup\left(m K_{2}\right)\right)$, where $p=\frac{3 r t+6 m+1}{4}$. Then G is a p-connected graph of order $n=\frac{7 r t+14 m+5}{4}$, and

$$
\frac{\sigma_{r+1}(G)}{r+1} \geq p=\frac{3 r t+6 m+1}{4}=\frac{3 n-2}{7}
$$

Let $E^{\prime}=E\left(m K_{2}\right)$ and $G^{\prime}=G-E^{\prime}$. We choose $S=V\left(K_{p}\right) \subseteq V\left(G^{\prime}\right)$, then we obtain

$$
c_{1}\left(G^{\prime}-S\right)+c_{3}\left(G^{\prime}-S\right)=r t+1+2 m>\frac{4 p+1}{3}=\frac{4|S|+1}{3}
$$

By Theorem 4, G^{\prime} is has no $\left\{P_{2}, P_{5}\right\}$-factor, that is, G is not a $\left(\left\{P_{2}, P_{5}\right\}, m\right)$-factor deleted graph.

ACKNOWLEDGEMENTS

This work was supported by the National Natural Science Foundation of China (Grant Nos. 11871239 and 11971196).

REFERENCES

1. J. AKIYAMA, D. AVIS, H. ERA, On a $\{1,2\}$-factor of a graph, TRU Math., 16, pp. 97-102, 1980.
2. J. AKIYAMA, M. KANO, Factors and factorizations of graphs - a survey, J. Graph Theory., 9, pp. 1-42, 1985.
3. J. AKIYAMA, M. KANO, Factors and factorizations of graphs, Springer, Berlin, 2011, Lecture Notes in Mathematics, Vol. 2031, pp. 1-347.
4. K. ANDO, Y. EGAWA, A. KANEKO, K.I. KAWARABAYASHI, H. MATSUDA, Path factors in claw-free graphs, Discrete Math., 243, pp. 195-200, 2002.
5. C. BAZGAN, A.H. BENHAMDINE, H. LI, M. WOŹNIAK, Partitioning vertices of 1-tough graph into paths, Theoretical Computer Science, 263, pp. 255-261, 2001.
6. Y. CHEN, G. DAI, Binding number and path-factor critical deleted graphs, AKCE International Journal of Graphs and Combinatorics, 19, 3, pp. 197-200, 2022, https://doi.org/10.1080/09728600.2022.2094299.
7. G. DAI, The existence of path-factor covered graphs, Discussiones Mathematicae Graph Theory, 43, pp. 5-16, 2023.
8. G. DAI, Remarks on component factors in graphs, RAIRO-Operations Research, 56, pp. 721-730, 2022.
9. G. DAI, On 2-matching covered graphs and 2-matching deleted graphs, RAIRO-Operations Research, 56, pp. 3667-3674, 2022.
10. G. DAI, Z. HU, P_{3}-factors in the square of a tree, Graphs and Combinatorics, 36, pp. 1913-1925, 2020.
11. G. DAI, Y. HANG, X. ZHANG, Z. ZHANG, W. WANG, Sufficient component conditions for graphs with $\left\{P_{2}, P_{5}\right\}$-factors, RAIROOperations Research, 56, pp. 2895-2901, 2022.
12. G. DAI, Z. ZHANG, Y. HANG, X. ZHANG, Some degree conditions for $P_{\geq k}$-factor covered graphs, RAIRO-Operations Research, 55, pp. 2907-2913, 2021.
13. Y. EGAWA, M. FURUYA, The existence of a path-factor without small odd paths, Electron. J. Combin., 25, pp. 1-40, 2018.
14. Y. EGAWA, M. FURUYA, Path-factors involving paths of order seven and nine, Theory and Applications of Graphs, 3, 1 , art. 5, 2016, https://doi.org/10.20429/tag.2016.030105.
15. Y. EGAWA, M. FURUYA, K. OZEKI, Sufficient conditions for the existence of a path-factor which are related to odd components, J. Graph Theory, 89, pp. 327-340, 2018.
16. A. KANEKO, A necessary and sufficient condition for the existence of a path factor every component of which is a path of length at least two, J. Combin. Theory Ser. B., 88, pp. 195-218, 2003.
17. M. KANO, C. LEE, K. SUZUKI, Path and cycle factors of cubic bipartite graphs, Discuss. Math. Graph Theory, 28, pp. 551-556, 2008.
18. K. KAWARABAYASHI, H. MATSUDA, Y. ODA, K. OTA, Path factors in cubic graphs, J. Graph Theory, 39, pp. 188-193, 2002.
19. M. LOEBL, S. POLJAK, Efficient subgraph packing, J. Combin. Theory Ser. B, 59, pp. 106-121, 1993.
20. W.T. TUTTE, The factors of graphs, Canad. J. Math., 4, pp. 314-328, 1952.
21. Q.R. YU, G.Z. LIU, Graph Factors and Matching Extensions, Higher Education Press, Beijing, 2009.
22. P. ZHANG, S. ZHOU, Characterizations for $P_{\geq 2}$-factor and $P_{\geq 3}$-factor covered graphs, Discrete Math., 309, pp. 2067-2076, 2009.
23. S. ZHOU, Z. SUN, Some existence theorems on path factors with given properties in graphs, Acta Mathematica Sinica, English Series, 36, pp. 917-928, 2020.
24. S. ZHOU, J. WU, T. ZHANG, The existence of $P_{\geq 3}$-factor covered graphs, Discussiones Mathematicae Graph Theory, 37, pp. 1055-1065, 2017.
