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Abstract. For a graph G, a spanning subgraph F of G is called a {P2,P5}-factor if every component of F is
isomorphic to P2 or P5, where Pi denotes the path of order i. A graph G is called a ({P2,P5},k)-factor critical
graph if G−V ′ contains a {P2,P5}-factor for any V ′ ⊆V (G) with |V ′|= k. A graph G is called a ({P2,P5},m)-
factor deleted graph if G−E ′ has a {P2,P5}-factor for any E ′ ⊆ E(G) with |E ′| = m. The degree sum of G is
defined by

σr+1(G) = min
X⊆V (G)

{
∑
x∈X

dG(x) : X is an independent set of r+1 vertices
}
.

In this paper, using degree sum conditions, we demonstrate that
(i) G is a ({P2,P5},k)-factor critical graph if σr+1(G)>

(3n+4k−2)(r+1)
7 and κ(G)≥ k+ r;

(ii) G is a ({P2,P5},m)-factor deleted graph if σr+1(G)>
(3n+2m−2)(r+1)

7 and κ(G)≥ 5m
4 + r.
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1. INTRODUCTION

In this paper, we consider only finite and undirected graph without loops or multiple edges. Throughout
this paper, we consider only simple connected graphs. Let G = (V (G),E(G)) be a graph. We denote by V (G)
and E(G) the vertex set and the edge set of G, respectively. For v ∈ V (G), we use dG(v) and NG(v) to denote
the degree of v and the set of vertices adjacent to v in G, respectively. If dG(v) = 0 for some vertex v ∈ V (G),
then v is said to be an isolated vertex in G. The number of isolated vertices of a graph G is denoted by i(G). For
any subset S ⊆V (G), let G[S] denote the subgraph of G induced by S, and G−S := G[V (G)\S] is the resulting
graph after deleting the vertices of S from G. The number of connected components of a graph G is denoted by
ω(G). We write κ(G) for the vertex connectivity of G.

A spanning subgraph of G is a subgraph H of G such that V (H) = V (G) and E(H) ⊆ E(G). For a family
of connected graphs F , a spanning subgraph H of a graph G is called an F -factor of G if its each component
is isomorphic to an element of F . In particular, H is called a {P2,P5}-factor of G if its each component is
isomorphic to P2 or P5, where Pi denotes the path of order i. A graph G is called a ({P2,P5},k)-factor critical
graph if G−V ′ contains a {P2,P5}-factor for any V ′ ⊆V (G) with |V ′|= k. A graph G is called a ({P2,P5},m)-
factor deleted graph if G−E ′ has a {P2,P5}-factor for any E ′ ⊆ E(G) with |E ′|= m.

Since Tutte proposed the well-known Tutte 1-factor theorem [20], path-factors of graphs [2, 5, 6, 8–11, 16]
and path-factor covered graphs [7, 12, 22–24] have been extensively studied. More results on graph factors are
referred to the survey papers and books [3, 21].

As early as 1985, Akiyama et al. [1] provided a good characterization for a graph admitting a {P2,P3}-factor,
which is stated as follows.
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THEOREM 1 (Akiyama, Avis and Era [1]) . A graph G has a {P2,P3}-factor if and only if i(G−S)≤ 2|S|
for all S ⊆V (G).

For an integer d ≥ 2, a {Pi : i ≥ d}-factor is briefly denoted by P≥d-factor. Note that a graph has P≥2-factors
if and only if it has {P2,P3}-factors. Kaneko [16] gave a necessary and sufficient condition for the existence
of P≥3-factors. For d ≥ 4, it is not known that whether the existence problem of P≥d-factors is polynomially
solvable or not, though some results about such factors on special classes of graphs have been obtained (see,
for example, Kano et al. [17], Ando et al. [4], and Kawarabayashi et al. [18]).

A graph F is hypomatchable if F − x has a perfect matching for every x ∈ V (F). A graph is a propeller if
it is obtained from a hypomatchable graph F by adding new vertices u,v and edge uv, and joining u to some
vertices of F . Loebal and Poljak [19] proved the following theorem.

THEOREM 2 (Loebal and Poljak [19]) . Let F be a connected nontrivial graph. If F has a perfect match-
ing, F is hypomatchable, or F is a propeller, then the existence problem of a {P2,F}-factor is polynomially
solvable. The problem is NP-complete for all other graphs F.

In particular, the existence problem of a {P2,P2d+1}-factor is NP-complete for d ≥ 2. As {P2,P2d+1}-
factor is a useful tool for finding large matchings, Egawa, Furuya and Ozeki [15] investigated the existence of
{P2,P2d+1}-factors and obtained the following theorem.

For S ⊆ V (G), let Ci(G− S) be the set of components of order i in G− S, where integer i ≥ 1. Write
ci(G− S) = |Ci(G− S)|. For 0 ≤ i ≤ d − 1, we use co

<2d(G− S) to denote the number of odd components of
G−S with order less than 2d, that is, co

<2d(G−S) = ∑1≤i≤d c2i−1(G−S).

THEOREM 3 (Egawa, Furuya and Ozeki [15]) . Let d ≥ 3 be an integer, and let G be a graph. If co
<2d(G−

S)≤ 5
6d2 |S| for all S ⊆V (G), then G has a {P2,P2d+1}-factor.

Recently, Egawa and Furuya [13, 14] obtained stronger sufficient conditions for {P2,P2d+1}-factors with
d = 2,3,4. In particular, they proved the following theorem.

THEOREM 4 (Egawa & Furuya [13]) . A graph G has a {P2,P5}-factor if 3c1(G− S)+ 2c3(G− S) ≤
4|S|+1 for all S ⊆V (G).

Now, we introduce the parameter called degree sum. If a graph G has r independent vertices, define

σr+1(G) = min
X⊆V (G)

{
∑
x∈X

dG(x) : X is an independent set of r+1 vertices
}
.

In this paper, we obtain two degree sum conditions for graphs to be ({P2,P5},k)-factor critical graphs and
({P2,P5},m)-factor deleted graphs, respectively.

2. ({P2,P5},k)-FACTOR CRITICAL GRAPH

THEOREM 5 . Let G be a graph of order n ≥ 2r+ k+8, where r ≥ 1,k ≥ 0 are integers. If κ(G)≥ k+ r
and σr+1(G)> (3n+4k−2)(r+1)

7 , then G is a ({P2,P5},k)-factor critical graph.

Proof. Let G′ = G−V ′ for V ′ ⊆V (G) with |V ′|= k. In order to verify Theorem 5, it suffices to prove that
G′ has a {P2,P5}-factor. On the contrary, suppose that G′ admits no {P2,P5}-factor. Then by Theorem 4, there
exists S ⊆V (G′) such that 3c1(G′−S)+2c3(G′−S)≥ 4|S|+2. It follows that

c1(G′−S)+ c3(G′−S)≥ c1(G′−S)+
2
3

c3(G′−S)≥ 4|S|+2
3

(1)

for some S ⊆V (G′).
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CLAIM 1 . |S| ≥ r.

Proof. Suppose |S| ≤ r − 1, then by κ(G) ≥ k + r and |V ′| = k, we have that G′ − S = G−V ′ − S is
connected and thus ω(G′−S) = 1. Then by (1), we get

4|S|+2
3

≤ c1(G′−S)+ c3(G′−S)≤ ω(G′−S) = 1,

which implies |S| = 0 and c1(G′)+ c3(G′) = ω(G′) = 1. It follows that |G′| ≤ 3, which contradicts |G′| =
n− k ≥ 2r+8. 2

CLAIM 2 . c1(G′−S)≤ r.

Proof. Assume c1(G′−S)≥ r+1. Then there exist at least r+1 isolated vertices x1,x2, ...,xr+1 in G′−S
such that dG′−S(xi) = 0 for 1 ≤ i ≤ r+1. Hence, we have

dG(xi)≤ |V ′|+ |S|= |S|+ k (2)

for 1 ≤ i ≤ r+1.
Obviously, {x1,x2, ...,xr+1} is an independent set of G. In terms of (2) and the degree condition of Theorem

5, we obtain

|S|+ k ≥ max{dG(xi) : 1 ≤ i ≤ r+1} ≥ σr+1(G)

r+1
>

3n+4k−2
7

,

which implies

|S|> 3n−3k−2
7

. (3)

It follows from (1) and (4) that

n ≥ |S|+ |V ′|+ c1(G′−S)+3× c3(G′−S)

≥ |S|+ k+ c1(G′−S)+ c3(G′−S)

≥ |S|+ k+
4|S|+2

3

=
7|S|

3
+ k+

2
3

>
7
3
× 3n−3k−2

7
+ k+

2
3

= n,

which is a contradiction. We complete the proof of Claim 2. 2

Using (1) and Claim 1, we derive

c1(G′−S)+ c3(G′−S)≥ 4|S|+2
3

≥ r+
r+2

3
≥ r+1,

which implies that G′−S admits r+1 components of order one or three. Let G1,G2, ...,Gr+1 be r+1 compo-
nents of G′−S, and choose vertex xi ∈V (Gi) such that dGi(xi)≤ 2 for 1≤ i≤ r+1. Obviously, {x1,x2, ...,xr+1}
is an independent set of G, and dG(xi) ≤ k+ |S|+2 for 1 ≤ i ≤ r+1. By the degree condition of Theorem 5,
we have that

k+ |S|+2 ≥ max{dG(xi) : 1 ≤ i ≤ r+1} ≥ σr+1(G)

r+1
>

3n+4k−2
7

.

It follows that
|S|> 3n−3k−16

7
. (4)
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According to (1), (4), Claim 2, r ≥ 1 and n ≥ 2r+ k+8, we obtain

n ≥ |S|+ |V ′|+3×
(
c1(G′−S)+ c3(G′−S)

)
−2× c1(G′−S)

≥ |S|+ k+4|S|+2−2r

> 5× 3n−3k−16
7

+ k

=
15n−8k−80

7
,

that is, n < k+10, which is a contradiction to that n ≥ 2r+k+8 ≥ k+10. We complete the proof of Theorem
5.

Remark 1. Now, we show that the degree sum condition

σr+1(G)>
(3n+4k−2)(r+1)

7

in Theorem 5 cannot be replaced by

σr+1(G)≥ (3n+4k−7)(r+1)
7

.

Let k ≥ 0 and r ≥ 1 be two integers, and t be a sufficiently large integer. Construct a graph G = Kq∨((rt+2k+
3)K1), where q = 3rt+10k+2

4 . Then G is a q-connected graph of order n = 7rt+18k+14
4 , and

σr+1(G)

r+1
≥ q =

3rt +10k+2
4

=
3n+4k−7

7
.

Let V ′ ⊆V (Kq) with |V ′|= k, and G′ = G−V ′. We choose S =V (Kq−k)⊆V (Kq), then we obtain

c1(G′−S)+ c3(G′−S) = rt +2k+3 >
4(q− k)+1

3
=

4|S|+1
3

.

By Theorem 4, G′ is has no {P2,P5}-factor, that is, G is not a ({P2,P5},k)-factor critical graph.

3. ({P2,P5},m)-FACTOR DELETED GRAPH

THEOREM 6 . Let m and r be two integers with r ≥ 1 and 0 ≤ m ≤ r− 1, and let G be a graph of order
n≥ 2r+4m+8. If κ(G)≥ 5m

4 +r and σr+1(G)> (3n+2m−2)(r+1)
7 , then G is a ({P2,P5},m)-factor deleted graph.

Proof. Let G′ = G−E ′ for E ′ ⊆ E(G) with |E ′| = m. Then V (G′) = V (G) and E(G′) = E(G) \E ′. To
prove Theorem 6, it suffices to verify that G′ has a {P2,P5}-factor. On the contrary, suppose that G′ admits no
{P2,P5}-factor. Then by Theorem 4, there exists S ⊆ V (G′) such that 3c1(G′−S)+2c3(G′−S) ≥ 4|S|+2. It
follows that

c1(G′−S)+ c3(G′−S)≥ c1(G′−S)+
2
3

c3(G′−S)≥ 4|S|+2
3

(5)

for some S ⊆V (G′).
Next, we shall consider two cases according to the value of c1(G− S) and derive a contradiction in each

case.

Case 1. c1(G−S)≥ r+1.
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In this case, there exist at least r + 1 isolated vertices x1,x2, ...,xr+1 in G− S such that dG−S(xi) = 0 for
1 ≤ i ≤ r+1. Hence, we have

dG(xi)≤ dG−S(xi)+ |S|= |S| (6)

for 1 ≤ i ≤ r+1. Obviously, {x1,x2, ...,xr+1} is an independent set of G. Then by (6) and the degree condition
of Theorem 6, we have that

|S| ≥ max{dG(xi) : 1 ≤ i ≤ r+1} ≥ σr+1(G)

r+1
>

3n+2m−2
7

. (7)

It follows from (5) and (7) that

n ≥ |S|+ c1(G′−S)+ c3(G′−S)≥ |S|+ 4|S|+2
3

=
7|S|+2

3
>

3n+2m
3

> n,

which is a contradiction.

Case 2. c1(G−S)≤ r.

Subcase 2.1. S is not a vertex cut set of G.

In this subcase, ω(G− S) = ω(G) = 1. After deleting an edge in a graph, the number of its components
increases by at most 1. Hence, if |S| ≥ 3m+2

4 , then it follows that

c1(G′−S)+ c3(G′−S) = c1(G−S−E ′)+ c3(G−S−E ′)

≤ ω(G−S−E ′)

≤ ω(G−S)+m

= m+1

≤ 4|S|−2
3

+1

=
4|S|+1

3
,

which contradicts (5).

If 1 ≤ |S|< 3m+2
4 , then by m ≤ 2r−1 and κ(G)≥ 5m

4 + r, we have

κ(G−S)≥ κ(G)−|S|> 5m
4

+ r− 3m+2
4

=
m−1

2
+ r ≥ m.

By the integrity of κ(G−S), we get
κ(G−S)≥ m+1. (8)

It follows from (8) that κ(G′−S) = κ(G−S−E ′)≥ κ(G−S)−|E ′| ≥ 1. Hence, we derive

c1(G′−S)+ c3(G′−S)≤ ω(G′−S) = 1. (9)

Using (5) and |S| ≥ 1, we obtain

2 ≤ 4|S|+2
3

≤ c1(G′−S)+ c3(G′−S),

which is a contradiction to (9).

If |S|= 0, then by (5), we have

c1(G′)+ c3(G′) = c1(G′−S)+ c3(G′−S)≥ 4|S|+2
3

=
2
3
. (10)
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Note that κ(G′)≥ κ(G)−|E ′| ≥ 5m
4 + r−m ≥ r, and thus ω(G′) = 1. This together with (10) implies c1(G′)+

c3(G′) = ω(G′) = 1. Hence, G′ is a graph of order one or three, which contradicts |G′|= n ≥ 2r+4m+8 > 3.

Subcase 2.2. S is a vertex cut set of G.

In this subcase, we have ω(G−S)≥ 2 and |S| ≥ κ(G)≥ 5m
4 + r. In terms of (5) and m ≤ r−1, we obtain

c1(G−S)+ c3(G−S) ≥ c1(G′−S)+ c3(G′−S)−2m

≥ 4|S|+2
3

−2m

≥ −m+4r+2
3

=
−m+ r−1

3
+ r+1

≥ r+1,

which implies that there exist r+ 1 components of order at most three in G− S, denoted by H1,H2, ...,Hr+1.
We choose xi ∈ V (Hi) with dHi(xi) ≤ 2 for 1 ≤ i ≤ r+1. Obviously, {x1,x2, ...,xr+1} is an independent set of
G. Then it follows from the degree condition of Theorem 6 that

|S|+2 ≥ max{dG(xi) : 1 ≤ i ≤ r+1} ≥ σr+1(G)

r+1
>

3n+2m−2
7

.

It follows that
|S|> 3n+2m−16

7
. (11)

In light of (5), (11), c1(G−S)≤ r and n ≥ 2r+4m+8, we deduce

n ≥ |S|+3×
(
c1(G−S)+ c3(G−S)

)
−2× c1(G−S)

≥ |S|+3×
(4|S|+2

3
−2m

)
−2r

= 5|S|−6m+2−2r

> 5× 3n+2m−16
7

−6m+2−2r

=
15n−32m−66

7
−2r,

that is, n < 4m+ 33+7r
4 . Since r ≥ 1, we obtain n < 4m+ 33+7r

4 ≤ 4m+8+2r, which is a contradiction to that
n ≥ 4m+8+2r. We complete the proof of Theorem 6.

Remark 2. Now, we show that the degree sum condition

σr+1(G)>
(3n+2m−2)(r+1)

7

in Theorem 6 cannot be replaced by

σr+1(G)≥ (3n−2)(r+1)
7

.

Let m ≥ 0 and r ≥ 1 be two integers, and t be a sufficiently large integer. Construct a graph G = Kp ∨ ((rt +
1)K1 ∪ (mK2)), where p = 3rt+6m+1

4 . Then G is a p-connected graph of order n = 7rt+14m+5
4 , and

σr+1(G)

r+1
≥ p =

3rt +6m+1
4

=
3n−2

7
.
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Let E ′ = E(mK2) and G′ = G−E ′. We choose S =V (Kp)⊆V (G′), then we obtain

c1(G′−S)+ c3(G′−S) = rt +1+2m >
4p+1

3
=

4|S|+1
3

.

By Theorem 4, G′ is has no {P2,P5}-factor, that is, G is not a ({P2,P5},m)-factor deleted graph.
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