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Abstract. For a graph G, a spanning subgraph F of G is called a {P,, P5 }-factor if every component of F is
isomorphic to P; or Ps, where P; denotes the path of order i. A graph G is called a ({P,, Ps },k)-factor critical
graph if G— V'’ contains a {P;, Ps }-factor for any V/ C V(G) with |V/| = k. A graph G is called a ({P,, P5 },m)-
factor deleted graph if G — E’ has a {P,, Ps }-factor for any E' C E(G) with |E’| = m. The degree sum of G is
defined by

6,+1(G) = Xglvi?G) {xg dg(x) : X is an independent set of r+ 1 vertices}.

In this paper, using degree sum conditions, we demonstrate that
(i) G is a ({ Py, Ps},k)-factor critical graph if 6,41(G) > w and x(G) > k+r;
(ii) G is a ({P», Ps },m)-factor deleted graph if 6, (G) > % and x(G) > 57”’ +r.
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1. INTRODUCTION

In this paper, we consider only finite and undirected graph without loops or multiple edges. Throughout
this paper, we consider only simple connected graphs. Let G = (V(G),E(G)) be a graph. We denote by V(G)
and E(G) the vertex set and the edge set of G, respectively. For v € V(G), we use dg(v) and Ng(v) to denote
the degree of v and the set of vertices adjacent to v in G, respectively. If dg(v) = 0 for some vertex v € V(G),
then v is said to be an isolated vertex in G. The number of isolated vertices of a graph G is denoted by i(G). For
any subset S C V(G), let G[S] denote the subgraph of G induced by S, and G — S := G[V(G) \ §] is the resulting
graph after deleting the vertices of S from G. The number of connected components of a graph G is denoted by
®(G). We write k(G) for the vertex connectivity of G.

A spanning subgraph of G is a subgraph H of G such that V(H) =V(G) and E(H) C E(G). For a family
of connected graphs .%, a spanning subgraph H of a graph G is called an .% -factor of G if its each component
is isomorphic to an element of .%. In particular, H is called a {P,, Ps}-factor of G if its each component is
isomorphic to P, or Ps, where P; denotes the path of order i. A graph G is called a ({P,, Ps},k)-factor critical
graph if G — V'’ contains a {P,, Ps }-factor for any V' C V(G) with |V'| = k. A graph G is called a ({P», Ps },m)-
factor deleted graph if G — E’ has a {P», Ps }-factor for any E’ C E(G) with |E'| = m.

Since Tutte proposed the well-known Tutte 1-factor theorem [20], path-factors of graphs [2,5}/6}/8H11L/16]
and path-factor covered graphs [7,|12,22-24] have been extensively studied. More results on graph factors are
referred to the survey papers and books [3}21]].

As early as 1985, Akiyama et al. [1] provided a good characterization for a graph admitting a { P,, P; }-factor,
which is stated as follows.
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THEOREM 1 (Akiyama, Avis and Era [1]). A graph G has a {P», Ps}-factor if and only if i(G — S) < 2|S]|
forall S CV(G).

For an integer d > 2, a {P; : i > d }-factor is briefly denoted by P 4-factor. Note that a graph has P>,-factors
if and only if it has {P,, P; }-factors. Kaneko [16] gave a necessary and sufficient condition for the existence
of P>3-factors. For d > 4, it is not known that whether the existence problem of P-4-factors is polynomially
solvable or not, though some results about such factors on special classes of graphs have been obtained (see,
for example, Kano et al. [17], Ando et al. [4], and Kawarabayashi et al. [18])).

A graph F is hypomatchable if F — x has a perfect matching for every x € V(F). A graph is a propeller if
it is obtained from a hypomatchable graph F by adding new vertices u,v and edge uv, and joining u to some
vertices of F. Loebal and Poljak [19] proved the following theorem.

THEOREM 2 (Loebal and Poljak [[19]). Let F be a connected nontrivial graph. If F has a perfect match-
ing, F is hypomatchable, or F is a propeller, then the existence problem of a {P,,F }-factor is polynomially
solvable. The problem is NP-complete for all other graphs F.

In particular, the existence problem of a {P,, P,y }-factor is NP-complete for d > 2. As {Py, P41}~
factor is a useful tool for finding large matchings, Egawa, Furuya and Ozeki [15] investigated the existence of
{Ps, P54 1 }-factors and obtained the following theorem.

For S C V(G), let €;(G — S) be the set of components of order i in G — S, where integer i > 1. Write
ci(G—8)=|6(G—S)|. For0<i<d—1, weuse c?,,(G—S) to denote the number of odd components of
G — S with order less than 2d, that is, ¢?,,(G —S) = ¥1<j<4c2i-1(G —S).

THEOREM 3 (Egawa, Furuya and Ozeki [15]). Let d > 3 be an integer, and let G be a graph. If ¢?., ,(G —
S) < %\S]for all S CV(G), then G has a { Py, Py 1 }-factor.

Recently, Egawa and Furuya [[13}/14] obtained stronger sufficient conditions for {P,, P, 1 }-factors with
d =2,3,4. In particular, they proved the following theorem.

THEOREM 4 (Egawa & Furuya [|13|]). A graph G has a {P,Ps}-factor if 3¢1(G — S) 4+ 2¢3(G —§) <
41S|+1for all S C V(G).

Now, we introduce the parameter called degree sum. If a graph G has r independent vertices, define

0,+1(G) = Xrgnvi?c) {Xg dg(x) : X is an independent set of r+ 1 vertices}.

In this paper, we obtain two degree sum conditions for graphs to be ({P»,Ps},k)-factor critical graphs and
({P,, Ps},m)-factor deleted graphs, respectively.

2. ({P,,Ps},k)-FACTOR CRITICAL GRAPH

THEOREM 5. Let G be a graph of order n > 2r +k+ 8, where r > 1,k > 0 are integers. If k(G) > k+r

and 6,41(G) > w, then G is a ({P», Ps},k)-factor critical graph.

Proof. Let G' = G—V' for V' C V(G) with |V’| = k. In order to verify Theorem[J] it suffices to prove that
G’ has a {P», Ps }-factor. On the contrary, suppose that G’ admits no {P,, Ps }-factor. Then by Theorem 4] there
exists § C V(G') such that 3¢1(G' — S§) 4 2¢3(G' — S) > 4|S| + 2. It follows that

4/5)+2

(G =) (G —8) 2 1[G 8) + 2e5(G— 8) > (1)

for some S C V(G').
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CLAIM 1. |S| >r.

Proof.  Suppose |S| < r—1, then by x(G) > k+r and |V'| =k, we have that G' =S =G -V’ —S is
connected and thus @(G’ — S) = 1. Then by (1)), we get

48| +2
H;L <ci(G—8)+c3(G—8) <w(G —8) =1,

which implies |S| =0 and ¢;(G') + ¢3(G') = o(G’) = 1. Tt follows that |G’| < 3, which contradicts |G| =
n—k>2r+8. O

CLAIM 2. ¢1(G'—=S) <.

Proof. Assume ¢ (G’ —S) > r+ 1. Then there exist at least r+ 1 isolated vertices xj,x2, ...,X,+1 in G’ — S
such that dgy_g(x;) =0 for 1 <i <r+ 1. Hence, we have

do(x;) < [V'|+|S| = |S] +k 2

forl1 <i<r+1.
Obviously, {x1,x2,...,x,11 } is an independent set of G. In terms of (2)) and the degree condition of Theorem

BB we obtain

1(G)  3ntdk—2
|S\—|—k2max{dG(x,-):1§i§r+1}2G+1( )> n+

r+1 7 ’
which implies
3n—3k—-2
S| > =———. 3)
It follows from (T)) and (@) that
n > |S|+|V'|+c (G —S)+3xc3(G —9)
> |S|+k+ci (G —8)+c3(G' =)
4[] +2
> S| +k+ | |3
7S] 2
= R — k —
3 R 3
S 7 o 3n_3k_2+k+%
3 7 3
= n’
which is a contradiction. We complete the proof of Claim 2] O

Using (I)) and Claim[I] we derive

48| +2 2
> "; >r+ 2,

c1(G' —8) +¢3(G' =)

which implies that G’ — § admits r+ 1 components of order one or three. Let G1,Ga, ...,G,+1 be r+ 1 compo-
nents of G’ — S, and choose vertex x; € V(G;) such that dg,(x;) <2 for 1 <i<r+1. Obviously, {x;,x2,...,x,+1}
is an independent set of G, and dg(x;) < k+ |S|+2 for 1 <i < r+ 1. By the degree condition of Theorem [5]

we have that
0,+1(G) - 3n+4k—2

r+1 7

k+|S|+2>max{dg(x;): 1 <i<r+1}>

It follows that
S| > ——F—. 4
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According to (1)), (), Claim[2] » > 1 and n > 2r+ k + 8, we obtain

n > S|+ V|43 % (ci(G'=8)+c3(G' =S)) —2x¢1(G =8)
> |S|+k+4|S|+2-2r
3n—3k—16
> xf—i—k
~ 15n—8k—80
= —,

that is, n < k+ 10, which is a contradiction to that n > 2r +k+ 8 > k+ 10. We complete the proof of Theorem
O

Remark 1. Now, we show that the degree sum condition

Bn+4k—2)(r+1)

Gr+1(G) > 7

in Theorem [5|cannot be replaced by

Bn+4k—T7)(r+1)
7 .

Or+1 (G) >

Let k > 0 and r > 1 be two integers, and ¢ be a sufficiently large integer. Construct a graph G = K,V ((rt 42k +

3)K;), where g = W. Then G is a g-connected graph of order n = W, and
6:+1(G) o 3rt+10k+2  3n+4k—7
rbl ST T

Let V/ C V(K,) with [V'| =k, and G’ = G—V'. We choose S =V (K,_x) C V(K,), then we obtain

4(g—k)+1 _ 4]S|+1
3 3

c1(G'—=8)+c3(G—S)=rt+2k+3>

By Theorem 4] G’ is has no {P», Ps }-factor, that is, G is not a ({P, Ps},k)-factor critical graph.

3. ({P,,P5},m)-FACTOR DELETED GRAPH

THEOREM 6. Let m and r be two integers with r > 1 and 0 < m < r—1, and let G be a graph of order
n>2r+4m+8. If k(G) > 2 +rand 6,41(G) > w, then G is a ({P», Ps },m)-factor deleted graph.

Proof. Let G' = G —E' for E' C E(G) with |[E'| =m. Then V(G') =V(G) and E(G') = E(G) \ E'. To
prove Theorem@ it suffices to verify that G’ has a {P,, Ps }-factor. On the contrary, suppose that G’ admits no
{P,, Ps}-factor. Then by Theorem[d] there exists S C V(G’) such that 3¢; (G’ — §) +2¢3(G' — S) > 4|S| +2. It

follows that
4|S|+2

a6 =)+ (G —8) 2 er(G8) + 2e5(G— 8) > )

for some S C V(G).
Next, we shall consider two cases according to the value of ¢; (G — S) and derive a contradiction in each
case.

Case 1. ci(G—S) >r+1.
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In this case, there exist at least r+ 1 isolated vertices xj,x2,...,x,11 in G — S such that dg_g(x;) = 0 for
1 <i<r+1. Hence, we have
dg(x;) < dg-s(xi)+1S| =S| ©)

for 1 <i<r+1. Obviously, {x1,x2,...,x,+1 } is an independent set of G. Then by @ and the degree condition
of Theorem[6] we have that

1(G)  3n+2m—2
S| > max{dg(x) : 1 < i< rp1} > Oril@) 3nd2m=2

(N

It follows from (3]) and (7)) that

AlS|+2  7IS|+2 _ 3n+2m
= > >

n>|S|4+c1(G' —8)+c3(G —8) > |S|+ 3 3 3 n,

which is a contradiction.
Case2.c1(G-S8)<r.
Subcase 2.1. S is not a vertex cut set of G.

In this subcase, (G —S) = o(G) = 1. After deleting an edge in a graph, the number of its components
increases by at most 1. Hence, if |S| > 22, then it follows that

Cl(G,—S)+C3(G/—S) Cl(G—S—E/)+C3(G—S—E,)

o(G—-S—E)

o(G—-S)+m

m+1

415 -2
3

4|S]+1
3 )

IAIA

IN

+1

which contradicts ().
If 1 <|S] < 222 then by m < 2r— 1 and k(G) > 2% +r, we have

5 3 2 -1
K(G—8) > k(G)—|S| > Ly r_E2 T2 s
4 4 2
By the integrity of k(G —S), we get
K(G—S8)>m+1. ®)

It follows from (8)) that k(G' — ) = x(G—S—E') > k(G —S) — |E'| > 1. Hence, we derive
c1(G' = 8)+¢3(G —S) < 0(G —8) = 1. )
Using (5) and |S| > 1, we obtain

4\S|—|—2S

2< c1(G' = 8)+c3(G - 9),

which is a contradiction to (9).
If |S| = 0, then by (5], we have
4S|+2 2

3 3 (10)

c1(G)+c3(G)=c|(G' = 8)+c3(G' —8) >
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Note that k(G') > k(G) — |[E'| > 22 +r—m > r, and thus ®(G') = 1. This together with implies ¢;(G') +
c3(G") = o(G') = 1. Hence, G’ is a graph of order one or three, which contradicts |G'| =n > 2r+4m+8 > 3.

Subcase 2.2. S is a vertex cut set of G.

In this subcase, we have ©(G —S) > 2 and |S| > k(G) > 2 +r. In terms of (5) and m < r — 1, we obtain

c1(G=8)+c3(G=S) > ¢1(G —8)+c3(G —8)—2m

4 2
S Asl+z
3
S —mtdr+2
- 3
—m+r—1
= T — +r+1
> r+1,

which implies that there exist » + 1 components of order at most three in G — S, denoted by H|,H>,...,H, ..
We choose x; € V(H;) with dy,(x;) <2 for 1 <i<r+1. Obviously, {x;,x2,...,x.41} is an independent set of
G. Then it follows from the degree condition of Theorem [§] that

0-+1(G) - 3n+2m—2

S|+2> do(x;)): 1 <i< 11 >
IS| +2 > max{dg(x;): 1 <i<r+1} > — 5

It follows that
3n+2m—16

7
In light of , , c1(G—S8) <randn>2r+4m+S8, we deduce

S| > (11)

n > [S|43x(c1(G=98)+c3(G-5)) =2 xci1(G-3S)

418 +2

> S|+3><(|S’3+—2m)—2r

= 5|S|—-6m+2-2r
2m—1

> 5x73”+;" ® em+2-2r

15n—32m — 66
= — —2r,

that is, n < 4m+ W. Since r > 1, we obtain n < 4m + W < 4m+ 8 + 2r, which is a contradiction to that
n > 4m+ 8+ 2r. We complete the proof of Theorem [6] O

Remark 2. Now, we show that the degree sum condition

Bn+2m—-2)(r+1)
7

Ort1 (G) >

in Theorem [6] cannot be replaced by

(Bn—2)(r+1)

—

Let m > 0 and r > 1 be two integers, and ¢ be a sufficiently large integer. Construct a graph G = K, V ((rt +
1)K, U(mK>)), where p = W. Then G is a p-connected graph of order n = %, and

Or+1 (G) >

Gr+1(G)
r+1

3rt+6m—+1 3n—2
ZPET g T
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Let E' = E(mK,) and G’ = G — E’. We choose S = V(K,,) C V(G’), then we obtain

dp+1  4|S|+1

(G —=8)+c3(G=S)=rt+1+2m > 3 3

By Theorem 4] G’ is has no {P,, Ps }-factor, that is, G is not a ({P, Ps },m)-factor deleted graph.

ACKNOWLEDGEMENTS

This work was supported by the National Natural Science Foundation of China (Grant Nos.11871239 and
11971196).

REFERENCES

1. J. AKIYAMA, D. AVIS, H. ERA, On a {1,2}-factor of a graph, TRU Math., 16, pp. 97-102, 1980.
2. J. AKIYAMA, M. KANO, Factors and factorizations of graphs — a survey, J. Graph Theory., 9, pp. 1-42, 1985.

3. J. AKIYAMA, M. KANO, Factors and factorizations of graphs, Springer, Berlin, 2011, Lecture Notes in Mathematics, Vol. 2031,
pp. 1-347.

4. K. ANDO, Y. EGAWA, A. KANEKO, K.I. KAWARABAYASHI, H. MATSUDA, Path factors in claw-free graphs, Discrete Math.,
243, pp. 195-200, 2002.

5. C. BAZGAN, A.H. BENHAMDINE, H. LI, M. WOZNIAK, Partitioning vertices of 1-tough graph into paths, Theoretical Com-
puter Science, 263, pp. 255-261, 2001.

6. Y. CHEN, G. DAI, Binding number and path-factor critical deleted graphs, AKCE International Journal of Graphs and Combina-
torics, 19, 3, pp. 197-200, 2022, https://doi.org/10.1080/09728600.2022.2094299.

7. G. DAL, The existence of path-factor covered graphs, Discussiones Mathematicae Graph Theory, 43, pp. 5-16, 2023.

8. G. DAL, Remarks on component factors in graphs, RAIRO-Operations Research, 56, pp. 721-730, 2022.

9. G. DAL On 2-matching covered graphs and 2-matching deleted graphs, RAIRO-Operations Research, 56, pp. 3667-3674, 2022.
10. G. DAL Z. HU, P3-factors in the square of a tree, Graphs and Combinatorics, 36, pp. 1913-1925, 2020.

11. G.DAL Y. HANG, X. ZHANG, Z. ZHANG, W. WANG, Sufficient component conditions for graphs with { P,, Ps }-factors, RAIRO-
Operations Research, 56, pp. 2895-2901, 2022.

12. G. DAL Z. ZHANG, Y. HANG, X. ZHANG, Some degree conditions for P>-factor covered graphs, RAIRO-Operations Research,
55, pp. 2907-2913, 2021.

13. Y. EGAWA, M. FURUYA, The existence of a path-factor without small odd paths, Electron. J. Combin., 25, pp. 1-40, 2018.

14. Y. EGAWA, M. FURUYA, Path-factors involving paths of order seven and nine, Theory and Applications of Graphs, 3, I, art. 5,
2016, https://doi.org/10.20429/tag.2016.030105.

15. Y. EGAWA, M. FURUYA, K. OZEKI, Sufficient conditions for the existence of a path-factor which are related to odd components,
J. Graph Theory, 89, pp. 327-340, 2018.

16. A. KANEKO, A necessary and sufficient condition for the existence of a path factor every component of which is a path of length
at least two, J. Combin. Theory Ser. B., 88, pp. 195-218, 2003.

17. M. KANO, C. LEE, K. SUZUKI, Path and cycle factors of cubic bipartite graphs, Discuss. Math. Graph Theory, 28, pp. 551-556,
2008.

18. K. KAWARABAYASHI, H. MATSUDA, Y. ODA, K. OTA, Path factors in cubic graphs, J. Graph Theory, 39, pp. 188-193, 2002.
19. M. LOEBL, S. POLJAK, Efficient subgraph packing, J. Combin. Theory Ser. B, 59, pp. 106-121, 1993.

20. W.T. TUTTE, The factors of graphs, Canad. J. Math., 4, pp. 314-328, 1952.

21. Q.R. YU, G.Z. LIU, Graph Factors and Matching Extensions, Higher Education Press, Beijing, 2009.

22. P. ZHANG, S. ZHOU, Characterizations for P>y-factor and P>3-factor covered graphs, Discrete Math., 309, pp. 2067-2076,
2009.

23. S. ZHOU, Z. SUN, Some existence theorems on path factors with given properties in graphs, Acta Mathematica Sinica, English
Series, 36, pp. 917-928, 2020.

24. S. ZHOU, J. WU, T. ZHANG, The existence of P>3-factor covered graphs, Discussiones Mathematicae Graph Theory, 37, pp.
1055-1065, 2017.

Received September 10, 2022



