TWO-DISTANCE VERTEX-DISTINGUISHING TOTAL COLORING OF SUBCUBIC GRAPHS

Zhengyue HE, Li LIANG, Wei GAO
Yunnan Normal University, School of Information Science and Technology
Kunming 650500, China
Corresponding author: Wei GAO, E-mail: gaowei@ynnu.edu.cn

Abstract

A 2-distance vertex-distinguishing total coloring of graph G is a proper total coloring of G such that any pair of vertices at distance of two have distinct sets of colors. The 2-distance vertex-distinguishing total chromatic number $\chi_{d 2}^{\prime \prime}(G)$ of G is the minimum number of colors needed for a 2-distance vertex-distinguishing total coloring of G. In this paper, it's proved that if G is a subcubic graph, then $\chi_{d 2}^{\prime \prime}(G) \leq 7$.

Key words: 2-distance vertex distinguishing total coloring, total coloring, subcubic graph.
Mathematics Subject Classification (MSC2020): 05C15.

1. INTRODUCTION

All graphs considered in this paper are finite, simple and undirected. We use $V(G), E(G), \delta(G)$ and $\Delta(G)$ to denote the vertex set, edge set, minimum degree and maximum degree of graph G, respectively. The distance between two vertices u and v, denoted by $d(u, v)$, is the length of the shortest path connecting them. The graph G is denoted as Cubic if it is a 3-regular graph, and subcubic if $\Delta(G) \leq 3$. Let C_{n} be a cycle whose length is n.

A total-k-coloring of graph G is a mapping $\phi: V(G) \cup E(G) \rightarrow\{1,2, \cdots, k\}$ so that $\phi(x) \neq \phi(y)$ for any pair of adjacent or incident elements $x, y \in V(G) \cup E(G)$. The total chromatic index $\chi^{\prime \prime}(G)$ of graph G is defined as the smallest integer k to make sure a proper total- k-coloring exist in G. The total coloring of graph G was introduced by Behzad [1] and independently by Vizing [2], and each raised the following conjecture:

CONJECTURE 1. Every simple graph G has $\chi^{\prime \prime}(G) \leq \Delta(G)+2$.
So far Conjecture 1 remains open. A well-known upper bound of $\chi^{\prime \prime}(G)$ for simple graph G may be $\Delta(G)+10^{26}$, by Molloy and Reed [3].

For a total-k-coloring ϕ of G, we use $C_{\phi}(v)=\{\phi(v)\} \cup\{\phi(x v) \mid x v \in E(G)\}$ to denote the set of colors assigned to a vertex v and those edges incident to v. The neighbor-distinguishing total chromatic index $\chi_{a}^{\prime \prime}(G)$ of G is defined as the smallest integer k for which G can be totally- k-colored by using k colors so that $C_{\phi}(u) \neq$ $C_{\phi}(v)$ for any pair of adjacent vertices u and v.

Zhang et al. [4] studied neighbor-distinguishing total coloring of cycles, wheels, trees, complete graphs and complete bipartite graphs, and proposed the following conjecture:

CONJECTURE 2. Every graph G with $|V(G)| \geq 2$ has $\chi_{a}^{\prime \prime}(G) \leq \Delta(G)+3$.

Wang [5] and Chen [6], independently, proved this Conjecture holds for graphs with $\Delta(G) \leq 3$. Lu et al. [7] proved this Conjecture holds for graphs with $\Delta(G)=4$, and Papaioannou et al. [8] verified this Conjecture for 4-regular graphs. Applying a probabilistic analysis, Coker et al. [9] verified that $\chi_{a}^{\prime \prime}(G) \leq \Delta(G)+C$, where C
is a constant. Huang et al. [10] proved that $\chi_{a}^{\prime \prime}(G) \leq 2 \Delta(G)$ for any graph G with $\Delta(G) \geq 3$. The conjecture is still open for planar graphs. Furthermore, Chang et al. [11] proved that $\chi_{a}^{\prime \prime}(G) \leq \Delta(G)+3$ for every planar graph G with $\Delta(G) \geq 8$.

The 2-distance vertex-distinguishing total coloring of graph G is a proper total coloring of G such that $C_{\phi}(u) \neq C_{\phi}(v)$ for any pair of vertices u and v with $d(u, v)=2$. The 2-distance vertex-distinguishing total chromatic index $\chi_{d 2}^{\prime \prime}(G)$ of graph G is the smallest integer k such that G has a 2-distance vertex-distinguishing total coloring using k colors.

Hu et al. [12] studied 2-distance vertex-distinguishing total coloring of paths, cycles, wheels, trees, unicycle graphs, $P_{m} \times P_{n}$ and $C_{m} \times P_{n}$. Then they proposed the following conjecture:

CONJECTURE 3. Every simple graph G has $\chi_{d 2}^{\prime \prime}(G) \leq \Delta(G)+3$.

In this paper, we will prove $\chi_{d 2}^{\prime \prime}(G) \leq 7$ for any subcubic graphs.

2. MAIN RESULTS

Before showing our main result, we introduce a few of concepts and notation. $N_{G}(v)$ denotes the set of neighbors of the vertex v and $d_{G}(v)$ denotes the degree of the vertex v in G. A vertex of degree k is called k-vertex. Similarly, a vertex of degree at least $k($ at most $k)$ is called k^{+}-vertex $\left(k^{-}\right.$-vertex). A 3 -vertex v is called a 3_{i}-vertex if v is adjacent to exactly $i 2$-vertices for $0 \leq i \leq 3$. Let $\chi(G)$ denote the chromatic index of G, which is the least integer k for which G has a vertex coloring using k colors such that any two adjacent vertices get distinct colors.

In what follows, a 2 -distance vertex-distinguishing total k-coloring of G is shortly written as a 2DVDT-k-coloring. Two vertices $u, v \in V(G)$ with $d(u, v)=2$ are called a conflict with respect to the coloring ϕ if $C_{\phi}(u)=C_{\phi}(v)$. Otherwise, they are called compatible. For a subgraph G^{\prime} of G and a 2DVDT-coloring ϕ of G^{\prime}, we say that ϕ is a legal coloring of G^{\prime} for short.

The proof of main result is based on the following facts:
LEMMA 1 ([12]). Let G be a simple graph with $\Delta(G) \leq 2$, then $\chi_{d 2}^{\prime \prime}(G) \leq 5$.
LEMMA 2 ([13]). If G is a connected graph and is neither an odd cycle nor a complete graph, then $\chi(G) \leq \Delta$.

LEMMA 3 ([14]). Every connected cubic graph G without cut edges can be edge-partitioned into a perfect matching and a class of cycles.

THEOREM 1. If G be a subcubic graph, then $\chi_{d 2}^{\prime \prime}(G) \leq 7$.
Proof. The proof is by contradiction. Let G be a minimum counterexample in the Theorem 1 to make its edges $E(G)$ as small as possible. Obviously, G is a connected graph and $\chi_{d 2}^{\prime \prime}(G)>7$. However, if $|E(H)|<|E(G)|$ for any graph H, then $\chi_{d 2}^{\prime \prime}(H) \leq 7$. Assume that $C=\{1,2, \cdots, 7\}$ is a color set and ϕ is a 2DVDT-7-coloring. For the sake of simplicity in the following proof, we write $C_{\phi}(v)$ as $C(v)$ for a vertex $v \in V\left(G^{\prime}\right)$.

If $\Delta(G) \leq 2$, then graph G is a cycle or a path. From Lemma 1 it is follows that $\chi_{d 2}^{\prime \prime}(G) \leq 5$. So, assume that $\Delta(G)=3$. To complete the proof, we need to establish a series of auxiliary claims.

CLAIM 1. $\delta(G) \geq 2$.
Proof. Assume to the contrary that G contains a 1 -vertex v. Let u be the neighbor of v. Consider the subgraph $G^{\prime}=G-\{v\}$. Then G^{\prime} has a 2DVDT-7-coloring ϕ using the color set C by the minimality of G. We have two possibilities:

Case 1. $d_{G}(u)=2$.
Let u_{1} be the neighbor of u other than v. It suffices to color $u v$ with color $a \in C \backslash\left\{\phi(u), \phi\left(u u_{1}\right)\right\}$ so that u is compatible with the neighbors of u_{1}, then color v with color in $C \backslash\left\{\phi(u), \phi\left(u u_{1}\right), a\right\}$.

Case 2. $d_{G}(u)=3$.
Let u_{1}, u_{2} be the neighbors of u other than v. If at least one of u_{1} and u_{2} is a 2^{-}-vertex, then it suffices to color $u v$ with color $b \in C \backslash\left\{\phi(u), \phi\left(u u_{1}\right), \phi\left(u u_{2}\right)\right\}$ so that u is compatible with the neighbors of u_{1} and u_{2}, and color v with color in $C \backslash\left\{\phi(u), \phi\left(u u_{1}\right), \phi\left(u u_{2}\right), b\right\}$. Otherwise, $d_{G}\left(u_{1}\right)=d_{G}\left(u_{2}\right)=3$. Let $N_{G}\left(u_{1}\right)=\left\{u, w_{1}, w_{2}\right\}$ and $N_{G}\left(u_{2}\right)=\left\{u, w_{3}, w_{4}\right\}$. Furthermore, assume that $\phi\left(u u_{1}\right)=1, \phi\left(u u_{2}\right)=2$ and $\phi(u)=3$. If $u v$ cannot not be legally colored, suppose without loss of generality that $C\left(w_{i}\right)=\{1,2,3, i+3\}$ for $i=1,2,3,4$. It suffices to recolor u with color $a \in\{4,5,6,7\} \backslash\left\{\phi\left(u_{1}\right), \phi\left(u_{2}\right)\right\}$, color $u v$ with color in $\{4,5,6,7\} \backslash\{a\}$, and color v with 1 . Thus, G has a 2DVDT-7-coloring, a contradiction.

CLAIM 2. G does not contain a 3-cycle $v_{1} v_{2} v_{3} v_{1}$ satisfying one of the following:
(1) $d_{G}\left(v_{2}\right)=d_{G}\left(v_{3}\right)=2$ and $d_{G}\left(v_{1}\right)=3$.
(2) $d_{G}\left(v_{2}\right)=d_{G}\left(v_{3}\right)=3$ and $d_{G}\left(v_{1}\right)=2$.

Proof. (1) Assume to the contrary that G contains a 3-cycle $v_{1} v_{2} v_{3} v_{1}$ satisfying $d_{G}\left(v_{2}\right)=d_{G}\left(v_{3}\right)=2$ and $d_{G}\left(v_{1}\right)=3$. Let u_{1} be the neighbor of v_{1} other than v_{1} and v_{3}. Consider the subgraph $G^{\prime}=G-\left\{v_{2} v_{3}\right\}$. Then G^{\prime} has a 2DVDT-7-coloring ϕ using the color set C by the minimality of G. It suffices to color $v_{2} v_{3}$ with color in $C \backslash\left(C\left(v_{2}\right), C\left(v_{3}\right)\right)$ such that v_{2} and v_{3} are compatible with u_{1}. Thus, G has a 2DVDT-7-coloring, a contradiction.
(2) Assume to the contrary that G contains a 3-cycle $v_{1} v_{2} v_{3} v_{1}$ satisfying $d_{G}\left(v_{2}\right)=d_{G}\left(v_{3}\right)=3$ and $d_{G}\left(v_{1}\right)=$ 2. Let u_{i} be the neighbor of v_{i} other than v_{1}. Consider the subgraph $G^{\prime}=G-\left\{v_{1} v_{3}\right\}$. Then G^{\prime} has a 2DVDT7 -coloring ϕ using the color set C by the minimality of G. Assume without loss of generality that $\phi\left(v_{1} u_{1}\right)=$ $1, \phi\left(v_{2} v_{2}\right)=2, \phi\left(v_{2} u_{2}\right)=3$ and $\phi\left(v_{2}\right)=4$. It is easy to notice that $\phi\left(v_{3}\right) \notin\{2,4\}$. Then we use color 2 firstly to recolor v_{1}. We have to handle the following two situations:

Case 1. $d_{G}\left(u_{2}\right)=2$.
Firstly, assume that $\phi\left(v_{3}\right) \in\{1,3\}$. It suffices to color $v_{1} v_{3}$ with color in $\{4,5,6,7\} \backslash\left\{\phi\left(v_{3} u_{3}\right)\right\}$ such that G can be legally colored. Next, assume that $\phi\left(v_{3}\right) \in\{5,6,7\}$. Say $\phi\left(v_{3}\right)=5$ by symmetry. If $\phi\left(v_{3} u_{3}\right) \in$ $\{1,3\}$, it suffices to color $v_{1} v_{3}$ with color in $\{4,6,7\}$. Otherwise, $\phi\left(v_{3} u_{3}\right) \in\{4,6,7\}$. Say $\phi\left(v_{3} u_{3}\right)=4$ by symmetry. If $v_{1} v_{3}$ cannot be legally colored, assume without loss of generality that $C\left(u_{3}^{\prime}\right)=\{2,4,5,6\}$ and $C\left(u_{3}^{\prime \prime}\right)=\{2,4,5,7\}$ with $N_{G}\left(u_{3}\right)=\left\{v_{3}, u_{3}^{\prime}, u_{3}^{\prime \prime}\right\}$. It suffices to color $v_{1} v_{3}$ with 3 and recolor v_{1} with color 6 or 7.

Case 2. $d_{G}\left(u_{2}\right)=3$.
Firstly, assume that $\phi\left(v_{3}\right)=1$. It suffices to color $v_{1} v_{3}$ with color in $\{3,4,5,6,7\} \backslash\left\{\phi\left(v_{3} u_{3}\right)\right\}$ such that G can be legally colored. Next, assume that $\phi\left(v_{3}\right) \in\{3,5,6,7\}$. Say $\phi\left(v_{3}\right)=3$ by symmetry. If $\phi\left(v_{3} u_{3}\right)=1$, it suffices to color $v_{1} v_{3}$ with color in $\{4,5,6,7\}$. Otherwise, $\phi\left(v_{3} u_{3}\right) \in\{4,5,6,7\}$. Say $\phi\left(v_{3} u_{3}\right)=4$ by symmetry. If $v_{1} v_{3}$ cannot be legally colored, assume without loss of generality that $C\left(u_{3}^{\prime}\right)=\{2,3,4,5\}, C\left(u_{3}^{\prime \prime}\right)=\{2,3,4,6\}$ and $C\left(u_{2}\right)=\{2,3,4,7\}$ with $N_{G}\left(u_{3}\right)=\left\{v_{3}, u_{3}^{\prime}, u_{3}^{\prime \prime}\right\}$. It suffices to recolor v_{3} with color $a \in\{1,5,6,7\} \backslash\left\{\phi\left(u_{3}\right)\right\}$ and color $v_{1} v_{3}$ with color in $\{5,6,7\} \backslash\{a\}$.

CLAIM 3. G does not contain adjacent 2-vertices.
Proof. Assume to the contrary, G contains adjacent 2-vertices u, v. Let $N_{G}(u)=\left\{v, u_{1}\right\}$ and $N_{G}(v)=\left\{u, v_{1}\right\}$. If $d_{G}\left(v_{1}\right)=3$, then let $N_{G}\left(v_{1}\right)=\left\{v, v_{1}^{\prime}, v_{1}^{\prime \prime}\right\}$. By Claim 2 and $\Delta(G)=3, v u_{1} \notin E(G)$. Let $G^{\prime}=G-\{u\}+\left\{u_{1} v\right\}$. Then G^{\prime} has a 2DVDT-7-coloring ϕ using the color set C by the minimality of G. We have to handle the following two situations:

Case 1. $d_{G}\left(u_{1}\right)=2$.
Let $N_{G}\left(u_{1}\right)=\left\{u, u_{1}^{\prime}\right\}$. Based on ϕ, in G, color $u u_{1}$ with $\phi\left(v u_{1}\right)$. It suffices to color $u v$ with color $b \in$ $C \backslash\left\{\phi(v), \phi\left(v v_{1}\right), \phi\left(u u_{1}\right), \phi\left(u_{1} u_{1}^{\prime}\right)\right\}$, and color u with color in $C \backslash\left(C\left(u_{1}\right) \cup\{b\}\right)$.

Case 2. $d_{G}\left(u_{1}\right)=3$.
Let $N_{G}\left(u_{1}\right)=\left\{u, u_{1}^{\prime}, u_{1}^{\prime \prime}\right\}$. Assume without loss of generality that $\phi\left(u_{1}\right)=4, \phi\left(u_{1} u_{1}^{\prime}\right)=1, \phi\left(u_{1} u_{1}^{\prime \prime}\right)=2$ and $\phi\left(v u_{1}\right)=3$. It follows that $\phi(v) \notin\{3,4\}$ and $\phi\left(v v_{1}\right) \neq 3$. Based on ϕ, in G, color $u u_{1}$ with 3 . We have to
handle two possibilities:

- Assume that $\phi(v) \in\{1,2\}$. Say $\phi(v)=1$ by symmetry. It suffices to color $u v$ with color $b \in\{4,5,6,7\} \backslash$ $\left\{\phi\left(v v_{1}\right)\right\}$ such that v is compatible with the neighbours of v_{1}, and color u with color in $\{5,6,7\} \backslash\{b\}$.
- Assume that $\phi(v) \in\{5,6,7\}$. Say $\phi(v)=5$ by symmetry. If $\phi\left(v v_{1}\right) \notin\{4,6,7\}$, then it is similar to the former case of $\phi(v) \in\{1,2\}$. Otherwise, $\phi\left(\nu v_{1}\right) \in\{4,6,7\}$. Say $\phi\left(\nu v_{1}\right)=4$ by symmetry. If $d_{G}\left(v_{1}\right)=2$ or $d_{G}\left(v_{1}\right)=3$ and $C\left(v_{1}^{\prime}\right) \neq\{4,5, i\}$ for $i=6,7$. Then it suffices to color $u v$ with $b \in\{6,7\}$, and color u with color in $\{6,7\} \backslash\{b\}$. If $d_{G}\left(v_{1}\right)=3$ and $\left(C\left(v_{1}^{\prime}\right), C\left(v_{1}^{\prime \prime}\right)\right)=(\{4,5,6\},\{4,5,7\})$. It suffices to recolor v with color $a \in\{1,2\} \backslash\left\{\phi\left(v_{1}\right)\right\}$, and color $u v$ and u with 6 and 7 , respectively.

CLAIM 4. G does not contain a 4 -cycle $v_{1} v_{2} v_{3} v_{4} v_{1}$ such that $d_{G}\left(v_{2}\right)=d_{G}\left(v_{4}\right)=2$.
Proof. Assume to the contrary, G contains a 4 -cycle $v_{1} v_{2} v_{3} v_{4} v_{1}$ such that $d_{G}\left(v_{2}\right)=d_{G}\left(v_{4}\right)=2$. By Claim 2 and Claim 3, $d_{G}\left(v_{1}\right)=d_{G}\left(v_{3}\right)=3$ and $v_{1} v_{3} \notin E(G)$. Then let u_{1}, u_{3} be the neighbors of v_{1}, v_{3} other than v_{2} and v_{4}, respectively. If $d_{G}\left(u_{1}\right)=d_{G}\left(u_{3}\right)=3$, then let $N_{G}\left(u_{1}\right)=\left\{v_{1}, u_{1}^{\prime}, u_{1}^{\prime \prime}\right\}$ and $N_{G}\left(u_{3}\right)=\left\{v_{3}, u_{3}^{\prime}, u_{3}^{\prime \prime}\right\}$. There are three situations to be handled:

Case 1. $u_{1}=u_{3}$.
Let $G^{\prime}=G-\left\{v_{2}, v_{4}\right\}$. Then G^{\prime} has a 2DVDT-7-coloring ϕ using the color set C by the minimality of G. Assume without loss of generality that $\phi\left(v_{3} u_{3}\right)=1, \phi\left(v_{1} u_{3}\right)=2, \phi\left(u_{3} u_{3}^{\prime}\right)=4$ and $\phi\left(u_{3}\right)=4\left(d_{G}\left(u_{3}\right)=2\right.$ is similar). Remove firstly the colors of v_{1} and v_{3}, and use 4 to color v_{2}, v_{4}. Next, use $1,3,2,3$ to color $v_{1}, v_{1} v_{4}, v_{4} v_{3}, v_{3} v_{2}$, respectively. Finally, use $b \in\{5,6\}$ to color v_{3} to make v_{3} compatible with u_{3}^{\prime}, and color $v_{1} v_{2}$ with color in $\{5,6,7\} \backslash\{b\}$ such that v_{1} is compatible with u_{3}^{\prime}.

Case 2. $u_{1} u_{3} \notin E(G)$ and $u_{1} \neq u_{3}$.
Let $G^{\prime}=G-\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}+\left\{u_{1} u_{3}\right\}$. Then G^{\prime} has a 2DVDT-7-coloring ϕ using the color set C by the minimality of G. Assume without loss of generality that $\phi\left(u_{1} u_{3}\right)=1, \phi\left(u_{3} u_{3}^{\prime}\right)=2, \phi\left(u_{3} u_{3}^{\prime \prime}\right)=3$ and $\phi\left(u_{3}\right)=$ $4\left(d_{G}\left(u_{3}\right)=2\right.$ is similar). Based on ϕ, in G, use 1 to color $u_{1} v_{1}, u_{3} v_{3}$. It is easy to notice that color sets of u_{1} and u_{3} don't change in G, and $\phi\left(u_{1}\right) \neq 4$. So it suffices to color $v_{2}, v_{2} v_{3}, v_{3}, v_{3} v_{4}, v_{4}, v_{1} v_{4}, v_{1}$ with $2,4,5,6,2,3$, 4 , respectively. And color $v_{1} v_{2}$ with color in $\{5,6,7\}$ such that G can be legally colored.

Case 3. $u_{1} u_{3} \in E(G)$ and $u_{1} \neq u_{3}$.
Let $G^{\prime}=G-\left\{v_{2}, v_{4}\right\}$. Then G^{\prime} has a 2DVDT-7-coloring ϕ using the color set C by the minimality of G. Assume without loss of generality that $\phi\left(u_{1} u_{3}\right)=2, \phi\left(u_{3} u_{3}^{\prime}\right)=3, \phi\left(u_{3} v_{3}\right)=1$ and $\phi\left(u_{3}\right)=4\left(d_{G}\left(u_{3}\right)=2\right.$ is similar). It is easy to notice that $\phi\left(u_{1}\right) \neq 2$ and $\phi\left(u_{1} v_{1}\right) \neq 2$. Remove the colors of v_{1} and v_{3}. It firstly suffices to color $v_{1}, v_{4}, v_{3} v_{4}, v_{3}, v_{2}$ with color $2,4,2,3,4$, respectively. Nextly, we use $b \in\{5,6,7\}$ to color $v_{2} v_{3}$ such that v_{3} is compatible with u_{1} and u_{3}^{\prime}. Finally, we use $a \in\{1,3,5,6,7\} \backslash\left\{b, \phi\left(u_{1} v_{1}\right)\right\}$ to color $v_{2} v_{2}$, and color $v_{1} v_{4}$ with color in $\{3,5,6,7\} \backslash\left\{a, \phi\left(v_{1} u_{1}\right)\right\}$. Obviously, v_{1} has at least 4 distinctive color sets. Since v_{1} has at most three vertices of conflict, G has a 2DVDT-7-coloring. Thus, a contradiction.

CLAIM 5. G does not contain 3_{3}-vertex.

Proof. Assume to the contrary, G contains a 3_{3}-vertex v. Let $N_{G}(v)=\left\{v_{1}, v_{2}, v_{3}\right\}$ and $d_{G}\left(v_{1}\right)=d_{G}\left(v_{2}\right)=$ $d_{G}\left(v_{3}\right)=2$. And let u_{i} be the neighbor of v_{i} other than v for $i=1,2,3$. By Claim 3, $d_{G}\left(u_{1}\right)=d_{G}\left(u_{2}\right)=d_{G}\left(u_{3}\right)=$ 3. Let $N_{G}\left(u_{i}\right)=\left\{v_{i}, u_{i}^{\prime}, u_{i}^{\prime \prime}\right\}$ for $i=1,2,3$. By Claim $4, u_{1} \neq u_{2}$. Consider the subgraph $G^{\prime}=G-\left\{v_{1}\right\}-\left\{v v_{2}\right\}+$ $\left\{u_{1} v_{2}\right\}$. Then G^{\prime} has a 2DVDT-7-coloring ϕ using the color set C by the minimality of G. Assume without loss of generality that $\phi\left(v_{2} u_{1}\right)=1, \phi\left(u_{1} u_{1}^{\prime}\right)=2, \phi\left(u_{1} u_{1}^{\prime \prime}\right)=3$ and $\phi\left(u_{1}\right)=4$. Based on ϕ, in G, we color $u_{1} v_{1}$ with 1. Remove the color of v. There are two possibilities to be handled:

Case 1. $\phi\left(v v_{3}\right) \neq 1$.
We color $v v_{2}$ with 1 . It is easy to notice that the color set of v_{2} doesn't change in G. We have to handle three situations:
(1) $\phi\left(\nu v_{3}\right) \in\{2,3\}$. Say $\phi\left(v v_{3}\right)=2$ by symmetry. Firstly, we use 5 to color v_{1} and $b_{1} \in\{4,6,7\}$ to color νv_{1} such that v_{1} is compatible with v_{2}. It follows that νv_{1} can be colored with at least two colors. Next, we have two possibilities need to be handled according to the color of v_{3} :

- $\phi\left(v_{3}\right) \in\{1,4,5,6,7\}$. It suffices to color v with color in $\{3,4,6,7\} \backslash\left\{\phi\left(v_{2}\right), \phi\left(v_{3}\right), b_{1}\right\}$. Obviously, v
has at least one color set that can be distinguished from u_{i} for $i=1,2,3$.
- $\phi\left(v_{3}\right)=3$. We color v with $b_{2} \in\{4,6,7\} \backslash\left\{\phi\left(v_{2}\right), b_{1}\right\}$. If $C\left(v_{2}\right)=\{1,5, i\}, \phi\left(v_{2}\right)=i$, and $C\left(u_{3}\right)=$ $\{1,2, m, p\}$ for $i \in\{4,6,7\}$ and $m, p \in\{4,6,7\} \backslash\{i\}$. Then G cannot be legally colored. Thus, it suffices to recolor $v_{1}, v v_{1}, v$ with $6,4,7$, respectively. Otherwise, we are done.
(2) $\phi\left(v v_{3}\right)=4$. We have three possibilities need to be handled according to the color of v_{3} :
- $\phi\left(v_{3}\right) \in\{5,6,7\}$. Let $\phi\left(v_{3}\right)=a$. It suffices to color v_{1} with a, $v v_{1}$ with $b_{1} \in\{5,6,7\} \backslash\{a\}$ such that v_{1} is compatible with v_{2}, and color v with $b_{2} \in\{2,3,5,6,7\} \backslash\left\{\phi\left(v_{2}\right), a, b_{1}\right\}$.
- $\phi\left(v_{3}\right)=1$. It suffices to color v_{1} with $5, v v_{1}$ with $b_{1} \in\{6,7\}$ such that v_{1} is compatible with v_{2}, and color v with $b_{2} \in\{2,3,6,7\} \backslash\left\{\phi\left(v_{2}\right), b_{1}\right\}$.
- $\phi\left(v_{3}\right) \in\{2,3\}$. Say $\phi\left(v_{3}\right)=2$ by symmetry. It suffices to color v_{1} with $2, v v_{1}$ with $b_{1} \in\{5,6,7\} \backslash\{a\}$ such that v_{1} is compatible with v_{2} and u_{1}^{\prime}, and color v with $b_{2} \in\{3,5,6,7\} \backslash\left\{\phi\left(v_{2}\right), b_{1}\right\}$.

Obviously, v has at least one color set that can be distinguished from u_{i} for $i=1,2,3$.
(3) $\phi\left(v v_{3}\right) \in\{5,6,7\}$. Say $\phi\left(v v_{3}\right)=5$ by symmetry. We have four possibilities need to be handled according to the color of v_{3} :

- $\phi\left(v_{3}\right) \in\{6,7\}$. Say $\phi\left(v_{3}\right)=6$ by symmetry. It suffices to color v_{1} with $5, v v_{1}$ with $b_{1} \in\{4,7\}$ such that v_{1} is compatible with v_{2}, and color v with $b_{2} \in\{2,3,4,7\} \backslash\left\{\phi\left(v_{2}\right), b_{1}\right\}$.
- $\phi\left(v_{3}\right)=1$. It suffices to color v_{1} with $6, v v_{1}$ with $b_{1} \in\{4,7\}$ such that v_{1} is compatible with v_{2}, and color v with $b_{2} \in\{2,3,4,7\} \backslash\left\{\phi\left(v_{2}\right), b_{1}\right\}$.
- $\phi\left(v_{3}\right) \in\{2,3\}$. Say $\phi\left(v_{3}\right)=2$ by symmetry. It suffices to color v_{1} with $5, v v_{1}$ with $b_{1} \in\{4,6,7\}$ such that v_{1} is compatible with v_{2}, and color v with $b_{2} \in\{3,4,6,7\} \backslash\left\{\phi\left(v_{2}\right), b_{1}\right\}$.
- $\phi\left(v_{3}\right)=4$. It suffices to color v_{1} with $6, v v_{1}$ with $b_{1} \in\{4,7\}$ such that v_{1} is compatible with v_{2}, and color v with $b_{2} \in\{2,3,7\} \backslash\left\{\phi\left(v_{2}\right), b_{1}\right\}$.

Obviously, v has at least one color set that can be distinguished from u_{i} for $i=1,2,3$.

Case 2. $\phi\left(v v_{3}\right)=1$.
It is easy to notice that $\phi\left(v_{2}\right) \notin\{1,4\}$ and $\phi\left(v_{2} u_{2}\right) \neq 1$. Remove the color of v_{2}. We have three situations to handle according to the value of $\phi\left(v_{3}\right)$:
(1) $\phi\left(v_{3}\right)=4$. There are two possibilities to be handled:

- $\phi\left(v_{2} u_{2}\right) \neq 4$. Firstly, assume that $\phi\left(u_{2}\right) \neq 4$. It firstly suffices to color v_{2}, v_{1} with 4,5 , respectively. Then use $b_{1} \in\{2,3,5,6,7\} \backslash\left\{\phi\left(v_{2} u_{2}\right)\right\}$ to color $v v_{2}, b_{2} \in\{6,7\} \backslash\left\{b_{1}\right\}$ to color $v v_{1}$, and $b_{3} \in\{2,3,6,7\} \backslash\left\{b_{1}, b_{2}\right\}$ to color v. Next, assume that $\phi\left(u_{2}\right)=4$. It firstly suffices to color v_{2}, v_{1} with 5 , respectively. Then use color $b_{1} \in\{2,3,4,6,7\} \backslash\left\{\phi\left(v_{2} u_{2}\right)\right\}$ to color $v v_{2}$ such that v_{2} is compatible with u_{2}^{\prime} and $u_{2}^{\prime \prime}, b_{2} \in\{6,7\} \backslash\left\{b_{1}\right\}$ to color $v v_{1}$, and $b_{3} \in\{2,3,6,7\} \backslash\left\{b_{1}, b_{2}\right\}$ to color v.
- $\phi\left(v_{2} u_{2}\right)=4$. Firstly, assume that $\phi\left(u_{2}\right) \neq 2$. It firstly suffices to color v_{2}, v_{1} with 2,5 , respectively. Then use color $b_{1} \in\{3,5,6,7\}$ to color $v v_{2}$ such that v_{2} is compatible with u_{2}^{\prime} and $u_{2}^{\prime \prime}, b_{2} \in\{6,7\} \backslash\left\{b_{1}\right\}$ to color $v v_{1}$, and $b_{3} \in\{3,6,7\} \backslash\left\{b_{1}, b_{2}\right\}$ to color v. Next, assume that $\phi\left(u_{2}\right)=2$. It firstly suffices to color v_{2}, v_{1} with 5 , respectively. Then use color $b_{1} \in\{2,3,6,7\}$ to color $v v_{2}$ such that v_{2} is compatible with u_{2}^{\prime} and $u_{2}^{\prime \prime}$, $b_{2} \in\{6,7\} \backslash\left\{b_{1}\right\}$ to color $v v_{1}$, and $b_{3} \in\{2,3,6,7\} \backslash\left\{b_{1}, b_{2}\right\}$ to color v.

Obviously, v has at least one color set that can be distinguished from u_{i} for $i=1,2,3$.
(2) $\phi\left(v_{3}\right) \in\{2,3\}$. Say $\phi\left(v_{3}\right)=2$ by symmetry. There are two possibilities to be handled:

- $\phi\left(u_{2}\right) \neq 1$. By $\phi\left(v_{2} u_{2}\right) \neq 1$, it firstly suffices to color v_{2}, v_{1} with 1,5 , respectively. Then use color $b_{1} \in\{2,3,4,5,6,7\} \backslash\left\{\phi\left(v_{2} u_{2}\right)\right\}$ to color $v v_{2}$ such that v_{2} is compatible with $u_{2}^{\prime}, u_{2}^{\prime \prime}$ and $v_{3}, b_{2} \in\{4,6,7\} \backslash\left\{b_{1}\right\}$ to color $v v_{1}$ such that v_{1} is compatible with v_{2}, and $b_{3} \in\{3,4,6,7\} \backslash\left\{b_{1}, b_{2}\right\}$ to color v.
- $\phi\left(u_{2}\right)=1$. Firstly, assume that $\phi\left(v_{2} u_{2}\right) \neq 4$. It firstly suffices to color v_{2}, v_{1} with 4,5 , respectively. Then use color $b_{1} \in\{2,3,5,6,7\} \backslash\left\{\phi\left(v_{2} u_{2}\right)\right\}$ to color $v v_{2}$ such that v_{2} is compatible with u_{2}^{\prime} and $u_{2}^{\prime \prime}, b_{2} \in$ $\{4,6,7\} \backslash\left\{b_{1}\right\}$ to color $v v_{1}$, and $b_{3} \in\{3,6,7\} \backslash\left\{b_{1}, b_{2}\right\}$ to color v. Next, assume that $\phi\left(v_{2} u_{2}\right)=4$. It firstly suffices to color v_{2}, v_{1} with 2 , 5 , respectively. Then use color $b_{1} \in\{3,5,6,7\}$ to color $v v_{2}$ such that v_{2} is compatible with u_{2}^{\prime} and $u_{2}^{\prime \prime}, b_{2} \in\{4,6,7\} \backslash\left\{b_{1}\right\}$ to color $v v_{1}$, and $b_{3} \in\{3,4,6,7\} \backslash\left\{b_{1}, b_{2}\right\}$ to color v.

Obviously, v has at least one color set that can be distinguished from u_{i} for $i=1,2,3$.
(3) $\phi\left(v v_{3}\right) \in\{5,6,7\}$. Say $\phi\left(v v_{3}\right)=5$ by symmetry. There are two possibilities to be handled:

- $\phi\left(u_{2}\right) \neq 1$. By $\phi\left(v_{2} u_{2}\right) \neq 1$, it firstly suffices to color v_{2}, v_{1} with 1,6 , respectively. Then use color $b_{1} \in\{2,3,4,5,6,7\} \backslash\left\{\phi\left(v_{2} u_{2}\right)\right\}$ to color $v v_{2}$ such that v_{2} is compatible with $u_{2}^{\prime}, u_{2}^{\prime \prime}$ and $v_{3}, b_{2} \in\{4,7\} \backslash\left\{b_{1}\right\}$ to color $v v_{1}$ such that v_{1} is compatible with v_{2}, and $b_{3} \in\{2,3,4,7\} \backslash\left\{b_{1}, b_{2}\right\}$ to color v. It is easy to notice that $v v_{2}$ can be colored with at least two colors, then $v v_{1}$ can be colored with at least one color. Obviously, v has at least one color set that can be distinguished from u_{i} for $i=1,2,3$.
- $\phi\left(u_{2}\right)=1$. Firstly, assume that $\phi\left(v_{2} u_{2}\right) \neq 4$. It firstly suffices to color v_{2}, v_{1} with 4,6 , respectively. Then use color $b_{1} \in\{2,3,5,6,7\} \backslash\left\{\phi\left(v_{2} u_{2}\right)\right\}$ to color $v v_{2}$ such that v_{2} is compatible with u_{2}^{\prime} and $u_{2}^{\prime \prime}, b_{2} \in\{4,7\} \backslash\left\{b_{1}\right\}$ to color $v v_{1}$, and $b_{3} \in\{2,3,7\} \backslash\left\{b_{1}, b_{2}\right\}$ to color v. It is easy to notice that v_{1}, v_{2} and v_{3} do not conflict with each other. Obviously, v has at least one color set that can be distinguished from u_{i} for $i=1,2,3$. Next, assume that $\phi\left(v_{2} u_{2}\right)=4$. We firstly color v_{2}, v_{1} with 2,6 , respectively. Then use color $b_{1} \in\{3,5,6,7\}$ to color $v v_{2}$ such that v_{2} is compatible with u_{2}^{\prime} and $u_{2}^{\prime \prime}, b_{2} \in\{4,7\} \backslash\left\{b_{1}\right\}$ to color $v v_{1}$, and $b_{3} \in\{3,4,7\} \backslash\left\{b_{1}, b_{2}\right\}$ to color v. It is easy to notice that v_{1}, v_{2} and v_{3} do not conflict with each other. If $v v_{2}$ can only be colored by 3 and 7 , and $C\left(u_{3}\right)=\{1,3,4,7\}$. Then $C\left(u_{2}\right) \neq\{1,3,4,7\}$ and G can not be legally colored. Thus, it suffices to recolor $v_{1}, v v_{1}, v$ with $7,6,4$, respectively. Otherwise, we are done.

CLAIM 6. G does not contain 3_{2}-vertex.

Proof. Assume to the contrary, G contains a 3_{2}-vertex v. Let $N_{G}(v)=\left\{v_{1}, v_{2}, v_{3}\right\}, d_{G}\left(v_{1}\right)=d_{G}\left(v_{2}\right)=2$ and let u_{i} be the neighbor of v_{i} other than v for $i=1,2$. By Claim 3 and Claim 5, $d_{G}\left(u_{1}\right)=d_{G}\left(u_{2}\right)=d_{G}\left(v_{3}\right)=3$. Let $N_{G}\left(u_{i}\right)=\left\{v_{i}, u_{i}^{\prime}, u_{i}^{\prime \prime}\right\}$ for $i=1,2$, and $N_{G}\left(v_{3}\right)=\left\{v, u_{3}, u_{4}\right\}$. Assume without loss of generality that $2 \leq$ $d_{G}\left(u_{1}^{\prime}\right) \leq d_{G}\left(u_{2}^{\prime}\right) \leq 3$ and $d_{G}\left(u_{1}^{\prime \prime}\right)=d_{G}\left(u_{2}^{\prime \prime}\right)=3$ by Claim 5. By Claim $4, u_{1} \neq u_{2}$. Then consider the subgraph $G^{\prime}=G-\left\{v_{1}\right\}-\left\{v v_{2}\right\}+\left\{u_{1} v_{2}\right\}$. Then G^{\prime} has a 2DVDT-7-coloring ϕ using the color set C by the minimality of G. Assume without loss of generality that $\phi\left(v_{2} u_{1}\right)=1, \phi\left(u_{1} u_{1}^{\prime}\right)=2, \phi\left(u_{1} u_{1}^{\prime \prime}\right)=3$ and $\phi\left(u_{1}\right)=4$. It easy to notice that $\phi\left(v_{2}\right) \notin\{1,4\}$ and $\phi\left(v_{2} u_{2}\right) \neq 1$. Based on ϕ, in G, we color $u_{1} v_{1}$ with 1 . Remove the color of v. There are two possibilities to be handled:

Case 1. $\phi\left(v v_{3}\right) \neq 1$.

We color $v v_{2}$ with 1 . It is easy to notice that the color set of v_{2} doesn't change in G. We have to handle three situations:
(1) $\phi\left(v v_{3}\right) \in\{2,3\}$. Say $\phi\left(v v_{3}\right)=2$ by symmetry. It suffice to use 3 to color $v_{1}, b_{1} \in\{4,5,6,7\}$ to color $v v_{1}$ such that v_{1} is compatible with v_{2}, and $b_{3} \in\{4,5,6,7\} \backslash\left\{\phi\left(v_{2}\right), \phi\left(v_{3}\right), b_{1}\right\}$ to color v. Obviously, v has at least one color set that can be distinguished from u_{i} for $i=1,2,3,4$.
(2) $\phi\left(v v_{3}\right)=4$. The following four possibilities are discussed:

- Assume that $\phi\left(v_{2}\right)=2$ and $\left(C\left(u_{2}\right), C\left(u_{3}\right), C\left(u_{4}\right)\right)=(\{1,4,5,6\},\{1,4,5,7\},\{1,4,6,7\})$. Then it respectively suffices to color $v_{1}, v v_{1}$ with 5,3 , and color v with $\{5,6,7\} \backslash\left\{\phi\left(v_{3}\right)\right\}$.
- Assume that $\phi\left(v_{2}\right) \in\{5,6,7\}$ and $\phi\left(v_{3}\right)=2$. Say $\phi\left(v_{2}\right)=5$ by symmetry. If $\phi\left(v_{2} u_{2}\right)=3$ and $\left(C\left(u_{2}\right), C\left(u_{3}\right), C\left(u_{4}\right)\right)=(\{1,4,3,5\},\{1,4,3,7\},\{1,4,6,7\})$. We recolor $v v_{2}$ with 2 or 6 such that v_{2} is compatible with u_{2}^{\prime}, and color $v_{1}, v v_{1}, v$ with $6,7,3$, respectively. If $\phi\left(v_{2} u_{2}\right)=3, C\left(u_{2}\right) \neq\{1,3,4, i\}$ for $i=5,7$, and $\{1,4,6,7\} \in\left(C\left(u_{3}\right), C\left(u_{4}\right)\right)$. We respectively color v_{1}, v with 6,3 , and color $v v_{1}$ with 5 or 7 . If $\phi\left(v_{2} u_{2}\right)=3$ and $\{1,4,6,7\} \notin\left(C\left(u_{3}\right), C\left(u_{4}\right)\right)$. We color $v_{1}, v v_{1}, v$ with $5,6,7$. If $\phi\left(v_{2} u_{2}\right) \neq 3$ and $\left(C\left(u_{2}\right), C\left(u_{3}\right), C\left(u_{4}\right)\right)=$ $(\{1,4,5,6\},\{1,4,5,7\},\{1,4,6,7\})$. We color $v_{1}, v v_{1}, v$ with $5,3,6$. Otherwise, it suffices to color v_{1} with 3 , $v v_{1}$ with $b_{1} \in\{5,6,7\}$ and v with color in $\{6,7\} \backslash\left\{b_{1}\right\}$.
- Assume that $\phi\left(v_{2}\right), \phi\left(v_{3}\right) \in\{5,6,7\}$. Say $\phi\left(v_{2}\right)=5, \phi\left(v_{3}\right)=6$ by symmetry. It suffices to color v_{1} with $3, v v_{1}$ with $b_{1} \in\{5,6,7\}$ such that v_{1} is compatible with v_{2}, and color v with color in $\{2,7\} \backslash\left\{b_{1}\right\}$.
- Otherwise, we color v_{1} with $3, v v_{1}$ with $b_{1} \in\{5,6,7\}$ such that v_{1} is compatible with v_{2}, and color v with color in $\{2,5,6,7\} \backslash\left\{\phi\left(v_{2}\right), \phi\left(v_{3}\right), b_{1}\right\}$. Obviously, v has at least one color set that can be distinguished from u_{i} for $i=1,2,3,4$.
(3) $\phi\left(v v_{3}\right) \in\{5,6,7\}$. Say $\phi\left(v v_{3}\right)=5$ by symmetry. It suffices to color v_{1} with $5, v v_{1}$ with $b_{1} \in\{3,4,, 6,7\}$ such that v_{1} is compatible with v_{2}, and color v with color in $\{2,3,4,6,7\} \backslash\left\{\phi\left(v_{2}\right), \phi\left(v_{3}\right), b_{1}\right\}$. Obviously, v has at least one color set that can be distinguished from u_{i} for $i=1,2,3,4$.

Case $2 \phi\left(v v_{3}\right)=1$.
Remove the color of v_{2}. There are three situations to be handled depending on the value of $\phi\left(v_{3}\right)$:
(1) $\phi\left(v_{3}\right) \in\{2,3,4\}$. Say $\phi\left(v_{3}\right)=2$ by symmetry. Firstly, we color v_{1} with 3 . Next, there are two possibilities to be discussed:

- $\phi\left(u_{2}\right) \neq 1$. It suffices to color v_{2} with 1 , $v v_{2}$ with $b_{1} \in\{2,3,4,5,6,7\} \backslash\left\{\phi\left(v_{2} u_{2}\right)\right\}$ such that v_{2} is compatible with $u_{2}^{\prime}, v v_{1}$ with $b_{2} \in\{4,5,6,7\} \backslash\left\{b_{1}\right\}$ such that v_{1} is compatible with v_{2}, and v with color in $\{4,5,6,7\} \backslash\left\{b_{1}, b_{2}\right\}$.
- $\phi\left(u_{2}\right)=1$. Firstly, assume that $\phi\left(v_{2} u_{2}\right)=4$. It suffices to color v_{2} with $2, v v_{2}$ with $b_{1} \in\{3,5,6,7\}$ such that v_{2} is compatible with $u_{2}^{\prime}, v v_{1}$ with $b_{2} \in\{4,5,6,7\} \backslash\left\{b_{1}\right\}$, and v with color in $\{4,5,6,7\} \backslash\left\{b_{1}, b_{2}\right\}$. Next, assume that $\phi\left(v_{2} u_{2}\right) \neq 4$. It suffices to color v_{2} with $4, v v_{2}$ with $b_{1} \in\{2,3,5,6,7\} \backslash\left\{\phi\left(v_{2} u_{2}\right)\right\}$ such that v_{2} is compatible with $u_{2}^{\prime}, v v_{1}$ with $b_{2} \in\{4,5,6,7\} \backslash\left\{b_{1}\right\}$, and v with color in $\{5,6,7\} \backslash\left\{b_{1}, b_{2}\right\}$.

Obviously, v has at least one color set that can be distinguished from u_{i} for $i=1,2,3,4$.
(2) $\phi\left(v_{3}\right) \in\{5,6,7\}$. Say $\phi\left(v_{3}\right)=5$ by symmetry. Firstly, we color v_{1} with 5 . Next, we have two possibilities to be discussed:

- $\phi\left(u_{2}\right) \neq 1$. It suffices to color v_{2} with $1, v v_{2}$ with $b_{1} \in\{2,3,4,5,6,7\} \backslash\left\{\phi\left(v_{2} u_{2}\right)\right\}$ such that v_{2} is compatible with $u_{2}^{\prime}, v v_{1}$ with $b_{2} \in\{3,4,6,7\} \backslash\left\{b_{1}\right\}$ such that v_{1} is compatible with v_{2}, and v with color in $\{2,3,4,6,7\} \backslash\left\{b_{1}, b_{2}\right\}$.
- $\phi\left(u_{2}\right)=1$. Firstly, assume that $\phi\left(v_{2} u_{2}\right)=4$. It suffices to color v_{2} with $5, v v_{2}$ with $b_{1} \in\{2,3,6,7\}$ such that v_{2} is compatible with $u_{2}^{\prime}, v v_{1}$ with $b_{2} \in\{3,4,6,7\} \backslash\left\{b_{1}\right\}$, and v with color in $\{2,3,4,6,7\} \backslash\left\{b_{1}, b_{2}\right\}$. Next, assume that $\phi\left(v_{2} u_{2}\right) \neq 4$. It suffices to color v_{2} with $4, v v_{2}$ with $b_{1} \in\{2,3,5,6,7\} \backslash\left\{\phi\left(v_{2} u_{2}\right)\right\}$ such that v_{2} is compatible with $u_{2}^{\prime}, v v_{1}$ with $b_{2} \in\{3,4,6,7\} \backslash\left\{b_{1}\right\}$, and v with color in $\{2,3,6,7\} \backslash\left\{b_{1}, b_{2}\right\}$.

Obviously, v has at least one color set that can be distinguished from u_{i} for $i=1,2,3,4$.
CLAIM 7. G does not contain 3_{1}-vertex.
Proof. Assume to the contrary, G contains a 3_{1}-vertex v. Let $N_{G}(v)=\left\{v_{1}, v_{2}, v_{3}\right\}, d_{G}\left(v_{1}\right)=2$, and let u_{1} be the neighbor of v_{1} other than v. By Claim 3 and Claim 6, $d_{G}\left(u_{1}\right)=d_{G}\left(v_{2}\right)=d_{G}\left(v_{3}\right)=3$. Let $N_{G}\left(u_{1}\right)=$ $\left\{v_{1}, u_{1}^{\prime}, u_{1}^{\prime \prime}\right\}$, and $N_{G}\left(v_{i}\right)=\left\{v, v_{i}^{\prime}, v_{i}^{\prime \prime}\right\}$ for $i=2,3$. By Claim 6, $d_{G}\left(u_{1}^{\prime}\right)=d_{G}\left(u_{1}^{\prime \prime}\right)=3$. By Claim 2, $u_{1} \neq v_{2}$. Then consider the subgraph $G^{\prime}=G-\left\{v_{1}\right\}+\left\{v u_{1}\right\}$. Then G^{\prime} has a 2DVDT-7-coloring ϕ using the color set C by the minimality of G. Assume without loss of generality that $\phi\left(v u_{1}\right)=1, \phi\left(v v_{2}\right)=2, \phi\left(v v_{3}\right)=3$ and $\phi(v)=4$. Based on ϕ, in G, we color $u_{1} v_{1}$ with 1 . It is easy notice that the color set of u_{1} doesn't change in G. If $\{2,3,4, i\} \in\left(C\left(v_{2}^{\prime}\right), C\left(v_{2}^{\prime \prime}\right), C\left(v_{3}^{\prime}\right), C\left(v_{3}^{\prime \prime}\right)\right)$ for $i=5,6,7$. We color v_{1} with color $\{2,3\} \backslash\left\{\phi\left(u_{1}\right)\right\}$, recolor v with $b \in\{5,6,7\} \backslash\left\{\phi\left(v_{2}\right), v_{3}\right\}$, and color $v v_{1}$ with color in $\{5,6,7\} \backslash\{b\}$. Otherwise, it suffices to color v_{1} with color $\{2,3\} \backslash\left\{\phi\left(u_{1}\right)\right\}$ and $v v_{1}$ with color in $\{5,6,7\}$. Obviously, v has at least one color set that can be distinguished from $u_{1}, v_{i}^{\prime}, v_{i}^{\prime \prime}$ for $i=2,3$.

CLAIM 8. G does not contain a cut edge.

Proof. Assume to the contrary that G contains a cut edge $u v$. It follows that $G^{\prime}=G-\{u v\}$ consists of two components G_{1}^{\prime} and G_{2}^{\prime} for $u \in V\left(G_{1}^{\prime}\right)$ and $v \in V\left(G_{2}^{\prime}\right)$. Let $G_{1}=G\left[V\left(G_{1}^{\prime}\right) \cup\{v\}\right]$ and $G_{2}=G\left[V\left(G_{2}^{\prime}\right) \cup\{u\}\right]$. It follows that G_{1} and G_{2} are proper subgraphs of G. By the minimalization of G, G_{1} and G_{2} have 2DVDT-7coloring ϕ_{1} such that $C_{\phi_{1}}(u)=\{1,2,3,4\}$ with $\phi_{1}(u v)=1$ and ϕ_{2} such that $C_{\phi_{2}}(v)=\{1,5,6,7\}$ with $\phi_{2}(u v)=1$ use the color set C, respectively.(This can be accomplished by exchanging reasonably the colors of G_{2} under ϕ_{2}.) Noticed that combining ϕ_{1} and ϕ_{2} to produce a 2DVDT-7-coloring of G. This is a contradiction.

So far it follows that G is a 3-regular simple graph without cut edges. Since K_{4} can be 2DVDT-7-colorable with color set C by [12], we assume that $G \neq K_{4}$. By Lemma 2, G is 3 -colorable. Thus, first we use $1,2,3$ to color all vertices of G such that adjacent vertices receive distinct colors.

Next, we color all edges of G with colors in $\{3,4,5,6,7\}$. By Lemma 3, G can be edge-partitioned into a perfect matching M and a class \mathscr{A} of cycles. Color all edges of M with the same color 7. For each cycle $A=v_{1} v_{2} v_{3} \cdots v_{k} v_{1}$ in \mathscr{A}, we use colors of $\{3,4,5,6\}$ to color its edges. For convenience, we define each edge $v_{i} v_{i+1}$ as e_{i} for $v_{k+1}=v_{1}$. There are two situations to be handled as follows:

Case 1. Only two colors appear on the vertices of A.
Assume without loss of generality that $\phi\left(v_{1}\right)=1$ and $\phi\left(v_{2}\right)=2$.
If $k \equiv 0(\bmod 3)$, then $\left\{e_{1}, e_{4}, \cdots, e_{k-5}, e_{k-2}\right\} \rightarrow\{4\},\left\{e_{2}, e_{5}, \cdots, e_{k-4}, e_{k-1}\right\} \rightarrow\{5\},\left\{e_{3}, e_{6}, \cdots, e_{k-3}, e_{k}\right\} \rightarrow$ \{6\}.

If $k \equiv 1(\bmod 3)$, then $\left\{e_{1}, e_{4}, \cdots, e_{k-6}, e_{k-3}\right\} \rightarrow\{4\},\left\{e_{2}, e_{5}, \cdots, e_{k-5}, e_{k-2}\right\} \rightarrow\{5\},\left\{e_{3}, e_{6}, \cdots, e_{k-4}, e_{k-1}\right\} \rightarrow$ $\{6\},\left\{e_{k}\right\} \rightarrow\{5\}$.

If $k \equiv 2(\bmod 3)$, then $\left\{e_{1}, e_{4}, \cdots, e_{k-7}, e_{k-4}\right\} \rightarrow\{4\},\left\{e_{2}, e_{5}, \cdots, e_{k-6}, e_{k-3}\right\} \rightarrow\{5\},\left\{e_{3}, e_{6}, \cdots, e_{k-5}, e_{k-2}\right\} \rightarrow$ $\{6\},\left\{e_{k-1}, e_{k}\right\} \rightarrow\{4,3\}$.

Case 2. There are three consecutive vertices of A that receive distinct colors.
Assume without loss of generality that $\phi\left(v_{1}\right)=1, \phi\left(v_{2}\right)=2$ and $\phi\left(v_{3}\right)=3$.
If $k \equiv 0(\bmod 3)$, then $\left\{e_{1}, e_{4}, \cdots, e_{k-5}, e_{k-2}\right\} \rightarrow\{4\},\left\{e_{2}, e_{5}, \cdots, e_{k-4}, e_{k-1}\right\} \rightarrow\{5\},\left\{e_{3}, e_{6}, \cdots, e_{k-3}, e_{k}\right\} \rightarrow$ \{6\}.

If $k \equiv 1(\bmod 3)$, then $\left\{e_{1}, e_{4}, \cdots, e_{k-6}, e_{k-3}\right\} \rightarrow\{4\},\left\{e_{2}, e_{5}, \cdots, e_{k-5}, e_{k-2}\right\} \rightarrow\{5\},\left\{e_{3}, e_{6}, \cdots, e_{k-4}, e_{k-1}\right\} \rightarrow$ $\{6\},\left\{e_{k}\right\} \rightarrow\{5\}$.

If $k \equiv 2(\bmod 3)$, then $\left\{e_{1}, e_{4}, \cdots, e_{k-7}, e_{k-4}\right\} \rightarrow\{4\},\left\{e_{2}, e_{5}, \cdots, e_{k-6}, e_{k-3}\right\} \rightarrow\{5\},\left\{e_{3}, e_{6}, \cdots, e_{k-5}, e_{k-2}\right\} \rightarrow$ $\{6\},\left\{e_{k-1}\right\} \rightarrow\{4\}$. If $\phi\left(v_{k}\right)=2$, then color e_{k} with 3 . If $\phi\left(v_{k}\right)=3$, then color e_{k} with 5 .

This makes G 2DVDT-7-colorable. Thus, it is a contradiction. The whole proof of Theorem 1 is completed.

ACKNOWLEDGEMENTS

We thank the reviewers for their constructive comments in improving the quality of this paper. This work has been partially supported by National Science Foundation of China (No. 12161094).

REFERENCES

1. M. BEHZAD, Graphs and their chromatic numbers, PhD Thesis, Michigan State University, 2004.
2. G. VIZING, Some unsolved problems in graph theory, Uspekhi Mathematical Nauk, 23, pp. 117-134, 1968.
3. M. MOLLOY, B. REED, A bound on the total chromatic number, Combinatorics, 18, pp. 214-280, 1998.
4. Z. ZHANG, X. CHEN, J. LI, B. YAO, X. LU, J. WANG, On adjacent-vertex distinguishing total coloring of graphs, Science in China. Series A, A 48, pp. 289-299, 2005.
5. H. WANG, On the adjacent vertex distinguishing total chromatic number of the graphs with $\Delta(G)=3$, Journal of Combinatorial Optimization, 14, pp. 87-109, 2007.
6. X. CHEN, On the adjacent vertex distinguishing total coloring numbers of graphs with $\Delta(G)=3$, Discrete Mathematics, 308, pp. 4003-4007, 2008.
7. Y. LU, J. LI, R. LUO, Z. MIAO, Adjacent vertex distinguishing total coloring of graphs with maximum degree 4, Discrete Mathematics, 340, pp. 119-123, 2017.
8. A. PAPAIOANNOU, C. RAFTOPOULOU, On the AVDTC of 4-regular graphs, Discrete Mathematics, 330, pp. 20-40, 2014.
9. T. COKER, K. JOHANNSON, The adjacent vertex distinguishing total chromatic number, Discrete Mathematics, 312, pp. 27412750, 2012.
10. D. HUANG, W. WANG, C. YAN, A note on the adjacent vertex distinguishing total chromatic number of graphs, Discrete Mathematics, 312, pp. 3544-3546, 2012.
11. Y. CHANG, J. HU, G. WANG, X. YU, Adjacent vertex distinguishing total coloring of planar graphs with maximum degree 8 , Discrete Mathematics, 343, 10, art. 112014, 2020.
12. Y. HU, W. WANG, 2-distance vertex-distinguishing total coloring of graphs, Discrete Mathematics, Algorithms Applications, 10, 02, art. 1850018, 2018.
13. L. BROOKS, On colouring the nodes of a network, Mathematical Proceedings of the Cambridge Philosophical Society, 37, 2, pp. 194-197, 1941.
14. J. PETERSEN, Die Theorie ser regulären Graphsn, Acta Mathematica, 15, pp. 193-220, 1981.
