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1. MOTIVATION AND CONTEXT

The concept of stochastic integral is familiar to most probability theorists, manifesting itself in the guise
of its two avatars: the Stratonovich integral and the Itô integral; it is always presented within the conceptual
framework of probability theory. The aim of this work is to reconstruct the very same concept solely upon
functional-analytic and Riemannian foundations. Not only shall we achieve this goal, but we shall even be able
to exhibit an infinite family of such integrals, all of them particular instances of a single underlying general
concept; among these we shall also find the two historically important integrals mentioned above. This article
is a condensed version, lacking proofs and several notable results, of the significantly more detailed work
presented in [11]; in particular, all the proofs of the statements made in this text may be found therein.

In the following, M will be a separable connected Riemannian manifold and x0 ∈ M some fixed arbitrary
point. If t > 0, we shall repeatedly make use of the space Ct = {c : [0, t]→ M | c is continuous, with c(0) = x0},
that we shall endow with the natural Wiener measure wt . The form to integrate along curves will be α ∈Ω1(M),
a real smooth 1-form.

In order to connect this article with the stochastic literature, let us briefly recall some elements of stochastic
integration in Rn without any claim of rigour. If c is a smooth enough curve, the Riemann sums
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c α . It is worth asking ourselves: if c is merely continuous (or, even less, only an

element of ∏s∈[0,t] M), do these sums still converge to something meaningful and useful? The answer is known
to be in the affirmative, but in a slightly weaker sense, it no longer being true for every curve: it turns out that
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for almost every curve c (with respect to the Wiener measure), the limit exists and is called the Itô integral.
Furthermore, if we symmetrize the above Riemann sums, meaning that we should now consider the sums
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these, too, will converge, for almost every curve c, but this time to a different limit, called the Stratonovich integral.
The starting point of our development is the useful remark that, if in the formula

2k−1

∑
j=0

∫
[0,1]

α
(1−τ)c( jt

2k )+τ c( ( j+1)t
2k )

[
c
(
( j+1)t

2k

)
− c

(
jt
2k

)]
dP(τ) ,

we take the Borel probability P on [0,1] to be either P = δ0 (the Dirac probability concentrated in 0) or
P = 1

2(δ0 + δ1), we obtain precisely the sums seen above that converge to either the Itô or, respectively, the
Stratonovich integral. We conclude that these two stochastic integrals and their approximating sums seem to
be particular cases of a general, single concept, that we shall indeed construct below. The generalization of
this formula from Rn to M is quite straightforward: the line segment τ 7→ τ c( jt

2k )+ (1− τ)c( ( j+1)t
2k ) will get

replaced by the unique minimizing geodesic between c( jt
2k ) and c( ( j+1)t

2k ) (whenever it exists, of course), and

the vector c( ( j+1)t
2k )− c( jt

2k ) will get replaced by the tangent vector to this geodesic at τ .
Let us consider the trivial vector bundle M×C, endowed with the usual Hermitian structure, and with the

connection ∇(α) f = d f + i f α , where i =
√
−1 is a complex square root of −1. It is easy to see that ∇(α) is

Hermitian, and that the operator −∆(α) = (∇(α))∗∇(α) : C∞
0 (M)→ C∞

0 (M) is symmetric and positive-definite.
The usual Friedrichs construction will then give us a self-adjoint and positive-definite extension Lα that will be
densely defined in L2(M). Using the results obtained by Batu Güneysu in chapter XI of his monograph [7], the
semigroup (e−tLα )t≥0 will admit an integral kernel hα . Using the main theorem in [10] on (0,∞)×M×M, the
parabolic operator ∂t +Lα ⊕Lα will be hypoelliptic, whence we deduce that hα is smooth. The diamagnetic
inequality (proposition XI.5 in [7]), then tells us that |hα(t,x,y)| ≤ h(t,x,y) for every t > 0 and x,y ∈ M, where
h is the heat kernel on M.

For every k ∈N we shall consider the natural projection πk : Ct → M2k
given by πk(c) =

(
c( t

2k ), . . . ,c(2kt
2k )

)
.

Regardless of whether we endow Ct with the topology of uniform convergence of curves, or with the one of
pointwise convergence of curves, πk will be continuous. The continuous functions on some topological space
will be denoted by C(X), and the continuous bounded functions by Cb(X). The complex spaces Lp(X) will
have the usual meaning for p ∈ [1,∞] whenever X is endowed with a measure. The space L0(X) is the space of
complex-valued measurable functions identified under equality almost everywhere; the natural topology upon
it is the one of convergence in measure.

In order to ease the reader’s navigation through the text that follows, now is the right time to sketch the result
that we are looking for, and the strategy that we shall use to obtain it. We shall begin by constructing a very
special function ρα,t ∈ L∞(Ct), following which we shall show that the map R ∋ s 7→ ρsα,t ∈ B(L2(Ct)) (the
space of bounded operators in L2(Ct)) is a strongly continuous 1-parameter unitary group which, by Stone’s
theorem, will have a self-adjoint generator Stratt(α) (which will be later seen to be precisely the Stratonovich
stochastic integral, this also justifying its notation). The difficulty in proving this assertion comes from the fact
that ρα,t will be obtained through an abstract procedure which will obscure the group structure and its unitarity.
In order to obtain these very concrete properties, we shall construct a sequence of functions that will trivially
exhibit them, and which converges to ρα,t ; this convergence will transfer these properties to ρα,t .

More precisely, we shall construct a sequence of real measurable functions SP,t,k(α), linear in α ∈ Ω1(M),
such that eiSP,t,k(α) → ρα,t in L2(Ct). Although simple, this idea is complicated by technical details that we shall
point out when we encounter them, and that force us to approach the problem indirectly: instead of proving the
desired convergence directly on L2(Ct) (which seems extremely difficult), we shall first prove it in the space
L2(Ct(U)) associated to an arbitrary relatively compact open subset U with smooth boundary, following which
we shall consider an exhaustion of M with such subsets, which will allow us to prove the convergence in L2(Ct).
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2. A GENERALIZED WIENER MEASURE

Let U ⊆ M be a connected relatively compact open subset, with (possibly empty) smooth boundary, such
that x0 ∈U (if M is compact we shall take U = M). We shall endow the space

Ct(U) = {c : [0, t]→U | c is continuous, with c(0) = x0} ,

with the corresponding intrinsic Wiener measure w(U)
t (for details about the Wiener measure, the article [1]

contains all the necessary constructions and explanations; note that the constructions therein are not proba-
bilistic, but functional-analytic, therefore our project of a purely functional-analytic construction of stochas-
tic integration is not compromised). This is a metric space when endowed with the distance D(c0,c1) =
maxs∈[0,t] d

(
c0(s),c1(s)

)
; it is separable (and therefore second-countable) by [9]. In particular, we may use

Luzin’s theorem on it.
Let

Cyl(Ct(U)) = { f ∈Cb(Ct(U)) | ∃k ∈ N and fk ∈C(U2k

) such that f = fk ◦πk}

be the algebra of continuous cylindrical functions on Ct(U). Clearly, Cyl(Ct(U))⊂ L1(Ct(U)).

THEOREM 1. The algebra Cyl(Ct(U)) is dense in Lp(Ct(U),w(U)
t ) for every p ∈ [1,∞).

Let us define the (obviously linear) functional W (U)
α,t : Cyl(Ct(U))→ C by
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fk(x1, . . . ,x2k)

for every fk ◦πk ∈ Cyl(Ct(U)), where h(U)
α is the integral kernel on U associated to the connection d+ iα in the

trivial bundle U ×C, constructed as explained above (again, for details see chapter XI of [7]). The next theorem
will produce a measure density on Ct(U)) that will depend on the form α and that will be the main object of
study in the first half of this article. Its product with the Wiener measure may be thought of as a generalized, or
perturbed, Wiener measure; when α = 0 it coincides with the usual Wiener measure.

THEOREM 2. There exists a unique ρ
(U)
α,t ∈ L∞(Ct(U)) with ∥ρ

(U)
α,t ∥L∞(Ct(U)) ≤ 1 such that W (U)

α,t ( f ) =∫
Ct(U) f ρ

(U)
α,t dw(U)

t for every f ∈ Cyl(Ct(U)).

3. A SEQUENCE OF APPROXIMATIONS FOR ρ
(U)
α,t

So far, ρ
(U)
α,t has been constructed by a very abstract argument, therefore its various concrete properties are

difficult to study. As a consequence, in what follows we shall construct a sequence of concrete approximations
of this function, which will enjoy two essential properties: a group property, and the fact of being of absolute
value 1. We shall then show that this sequence converges to ρ

(U)
α,t in L2(Ct), so that these two properties will be

transferred to ρ
(U)
α,t , too. In order to complete this program, we shall now introduce several more ingredients.

Let P be a Borel regular probability on [0,1]; we shall see later on that the role of P will be to classify the
various stochastic integrals that we shall obtain.

Whenever the points x,y ∈ M may be joined by a unique minimizing geodesic, we shall denote it by γx,y :
[0,1]→ M, where we understand that γ(0) = x and γ(1) = y. Let us now define IP(α) : M×M → R by:

• IP(α)(x,y) =
∫
[0,1] αγx,y(τ)(γ̇x,y(τ))dP(τ), if there exists a unique minimizing geodesic γx,y as above be-

tween x and y;

• IP(α)(x,y) = 0, otherwise.
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For every k ∈ N, let us now define the ”approximations” SP,t,k(α) : Ct → R by

SP,t,k(α)(c) =
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j=0

IP(α)

(
c
(

jt
2k

)
,c
(
( j+1)t

2k

))
+

t
2k (d

∗
α)

(
c
(

jt
2k

))∫
[0,1]
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So far, ρ
(U)
α,t has been obtained by a very abstract procedure (theorem 2), which makes its use in concrete cal-

culations and the study of its properties very difficult. The following theorem remedies this situation, providing
us with a concrete understanding of ρ

(U)
α,t as the limit of a sequence of functions given by explicit formulae.

THEOREM 3. limk→∞ eiSP,t,k(α)
∣∣
Ct(U)

= ρ
(U)
α,t in L2(Ct(U),w(U)

t ), uniformly with respect to t in bounded
subsets of (0,∞), and uniformly with respect to x0 ∈U.

4. A UNITARY GROUP AND ITS GENERATOR

Let us now consider an exhaustion M =
⋃

j∈NU j of M with regular domains as the domain U used above (it

exists as a consequence of proposition 2.28 in [8]). For notational simplicity, let us write ρ
( j)
α,t instead of ρ

(U j)
α,t ,

h( j)
α instead of h(U j)

α , and w( j)
t instead of w(U j)

t . So far we know that eiSP,t,k
∣∣
Ct(U j)

→ ρ
( j)
α,t in L2(Ct(U j),w

( j)
t ) for

every j ∈ N.

LEMMA 1. The subset Ct(U j) is closed in Ct for every j ≥ 0. Similarly, Ct(Ui) is closed in Ct(U j) for
every i ≤ j.

The following lemma is as important as it is trivial.

LEMMA 2. If i ≤ j then ρ
( j)
α,t

∣∣
Ct(Ui)

= ρ
(i)
α,t almost everywhere on Ct(Ui) with respect to the measure w(i)

t .

The equality ρ
( j)
α,t

∣∣
Ct(Ui)

= ρ
(i)
α,t almost everywhere for every i ≤ j implies the existence of the pointwise

limit lim j→∞ ρ̃
( j)
α,t , which we shall denote by ρα,t . It will be a measurable function (as pointwise limit of a

sequence of measurable functions), and it will be bounded by 1 almost everywhere, because all the functions
in the sequence are so. Therefore, it will be an element of L∞(Ct ,wt). Using the argument in the above lemma,
one may show that ρα,t

∣∣
Ct(U j)

= ρ
( j)
α,t for every j ≥ 0, as elements from L∞(Ct ,w

( j)
t ).

After all these preliminary results, we may finally prove one of the core results of this work.

THEOREM 4.
lim
k→∞

∥eiSP,t,k(α)−ρα,t∥L2(Ct) = 0

uniformly with respect to t ∈ (0,T ], for every T > 0.

COROLLARY 1. ρα,t does not depend on the exhaustion with regular domains used.

We have obtained that ρα,t is the limit of a sequence of exponentials with imaginary exponents. It is
reasonable to ask whether ρα,t itself has such a form, and if the answer is affirmative to study its exponent. The
answer to this question (and the moral justification of all the effort spent in obtaining all the technical results so
far) is given by theorem 5.

THEOREM 5. There exists a unique real-valued function Stratt(α) ∈ L0(Ct) such that ρα,t = eiStratt(α).

When we constructed the functions SP,t,k(α), we did it in order for the functions eiSP,t,k(α) to approximate
ρα,t = eiStratt(α) in L2(Ct). We shall see now that this approximation property extends, even though in a weaker
form, to the exponents.



5 A functional-analytic construction of stochastic integrals in Riemannian manifolds 125

THEOREM 6. limk→∞ SP,t,k(α) = Stratt(α) in measure, uniformly with respect to t in bounded subsets of
(0,∞).

We shall see in the next section, that Stratt is the Stratonovich stochastic integral. The fact that it is the limit
in measure of the sequence of approximations used above was already known; what is new is that it stems into
existence as the generator of the unitary group considered above (or, giving up rigour, it is the ”logarithm” of
the function ρα,t).

5. A GENERAL CONCEPT OF STOCHASTIC INTEGRAL

In order to unravel a general concept of stochastic integral, let us return to the approximations SP,t,k(α)
constructed above and define the related approximations

AP,t,k(α)(c) =
2k−1

∑
j=0

IP(α)

(
c
(

jt
2k

)
,c
(
( j+1)t

2k

))
(1)

for every curve c ∈Ct (that is, we just drop the term containing d∗α). We shall now study the behaviour of these
approximations on continuously differentiable curves, this ”classical” behaviour going to guide us towards the
understanding of its ”stochastic” counterpart.

THEOREM 7. If c : [0, t]→ M is a twice continuously differentiable curve, then∫
c
α = lim

k→∞

AP,t,k(α)(c) .

We shall draw inspiration from the resemblance between theorem 7 and theorem 6 in order to exhibit a
general concept of stochastic integral. Let Prob([0,1]) the space of regular Borel probabilities on the real
interval [0,1].

Definition 1. We shall say that Intt : Ω1(M) → L0(Ct) is a stochastic integral if and only if there exists
P ∈ Prob([0,1]) such that Intt(α) be the limit in measure of the sequence of approximations AP,t,k(α) for every
α ∈ Ω1(M). When this condition is met we shall denote this stochastic integral by IntP,t , in order to emphasize
its dependence on P.

Although the convergence in measure obtained in theorem 6 was uniform with respect to t from bounded
subsets of (0,∞), we have not included this property in the above definition because it was not clear, upon
writing this text, whether this uniformity is an essential ingredient of the concept or a merely accidental one
without major consequences.

Remark 1. Given that convergence in measure (as in the proposed definition) is weaker than pointwise
convergence, let us emphasize that Intt(α)(·) must be understood not as a function defined for every curve
from Ct , but rather as an element from L0(Ct). This is the major difference from the usual line integral, which
is defined for every piecewise-differentiable curve.

Remark 2. It is worth noting, in light of theorem 7, that while the approximations AP,t,k evaluated along
twice continuously differentiable curves converge to the same limit that does not depend on P, they converge in
measure to different limits that do depend on P (more precisely, on its first-order moment, as we shall presently
see).

Let P ∈ Prob([0,1]). We would like to discover whether there exists any connection between the freshly
defined IntP,t(α) and the function Stratt(α) obtained in theorem 5. Let us notice that
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lim
k→∞

t
2k

2k−1

∑
j=0

(d∗α)

(
c
(

jt
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))
=

∫ t

0
(d∗α)(c(s))ds

for every c∈Ct , as the limit of the Riemann sums associated to the continuous function (d∗α)◦c, the equidistant
partition of [0, t] into 2k subintervals, and the intermediate points

(
c( jt

2k )
)

0≤ j≤2k−1. Even more, then, the above
convergence is also valid in measure. If we pass to the limit in measure in formula (1) used to define the
approximations AP,t,k, we get

IntP,t(α)(c) = Stratt(α)(c)−
∫
[0,1]

(2τ −1)dP(τ)
∫ t

0
(d∗α)(c(s))ds ,

which shows that although the probability P may be extremely complicated, the corresponding stochastic inte-
gral IntP,t remembers only its first-order moment, discarding any other information associated to P; furthermore,
any two probabilities from Prob([0,1]) with the same first order moment give rise to the same stochastic in-
tegral. We also conclude that, since the function Stratt has already been constructed, IntP,t exists for every
P ∈ Prob([0,1]). Since the function 2τ −1 has minimum −1 and maximum 1 on [0,1], and since P is a proba-
bility, it follows that

∫
[0,1](2τ − 1)dP(τ) ∈ [−1,1], and that every stochastic integral Intt on Ct is of the form

Intt(α) = Stratt(α)+θ
∫ t

0(d
∗α)(c(s))ds with θ ∈ [−1,1].

Furthermore, if P,Q ∈ Prob([0,1]) then

IntP,t(α)(c) = IntQ,t(α)(c)−2
∫
[0,1]

τ d(P−Q)(τ)
∫ t

0
(d∗α)(c(s))ds ,

so that any two stochastic integrals differ by a multiple of the integral of d∗α .
This is a good moment two see several concrete examples of such stochastic integrals as defined in this

work, and to compare our results to the ones already obtained in the stochastic literature.

• If P = δ0 (the Dirac measure concentrated at 0), then

Intδ0,t(α)(c) = Stratt(α)(c)+
∫ t

0
(d∗α)(c(s))ds .

By comparing our approximations Aδ0,k,t(α) of Iδ0,t(α) to the ones in theorem 7.37 on page 110 of [5] (or
to the ones in theorem A from [2], which is nevertheless stated under more restrictive hypotheses than here),
we recognize immediately that Intδ0,t(α) is the Itô integral of α , therefore from now on we shall denote it by
Itot(α).

• If P = Leb[0,1] (the Lebesgue measure on [0,1]), or P = δ 1
2

(the Dirac measure concentrated at 1
2 ), or

P = 1
2 δ1, or P = 1

2(δ0 +δ1), then the corresponding stochastic integral is

IntLeb[0,1],t(α) = Stratt(α) .

By comparing the approximations ALeb[0,1],k,t(α) of IntLeb[0,1],t(α) to those in theorem 7.14 on page 96 of [5], we
readily recognize that IntLeb[0,1],t(α) is the Stratonovich integral of α . (The reader is invited to compare these
results to the ones in section 6 of [12], too.)

• In general, if M1(P)=
∫
[0,1] τ dP(τ), then the stochastic integral IntP,t(α) corresponding to P∈ Prob([0,1])

coincides with the one produced by the probabilities δM1(P) (the Dirac measure concentrated at M1(P) ∈ [0,1])
and (1−M1(P))δ0 +M1(P)δ1, all these probabilities having M1(P) as first order moment. Nevertheless, al-
though in principle we could study the stochastic integrals defined in this work using only these very simple
combinations of Dirac measures, some results are much easier to prove using more complicated probabilities
with the same first order moment. In particular, in the study of the Stratonovich integral it is usually more
convenient to use the Lebesgue measure on [0,1].
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Remark 3. The previous examples show that the Stratonovich and Itô integrals of α are equal if and only if
d∗α = 0. This is worth comparing to lemma 8.24 on page 120 of [5], where only a necessary but not sufficient
condition (difficult to verify in concrete applications) is given that guarantees this equality. More specifically,
Émery first introduces the concept of stochastic parallel transport in the bundles T M and in T ∗M, starting from
which he constructs certain martingales depending on α; if these martingales are of finite variation, then the
Stratonovich and Itô integrals of α are equal.

As always when one studies objects that depend on certain parameters, it is useful to study how regular this
dependency is. In particular, it is interesting to study the dependence of the stochastic integral IntP,t(α) on the
parameter t ∈ (0,T ], where T > 0 is arbitrary. Since the stochastic integral IntP,t(α) lives in the space L0(Ct)
for each t ∈ (0,T ], and since all these spaces are unrelated to each other, we shall have to embed all of them
in the bigger space L0(CT ). In order to do this, let us remember that the natural topology in L0(Ct) is that of
convergence in the Wiener measure wt . If res[0,t] : CT → Ct is the restriction res[0,t](c) = c|[0, t], then clearly
wt = (res[0,t])∗wT .

For the line integral, if c : [0,T ]→ M is continuously-differentiable, then∣∣∣∣∣
∫

c
α −

∫
res[0,t](c)

α

∣∣∣∣∣=
∣∣∣∣∣
∫

res[t,T ](c)
α

∣∣∣∣∣≤ sup
s∈[0,T ]

|αc(s)(ċ(s))|(T − t) .

In particular, the map [0,T ]∋ t 7→
∫

res[0,t](c)
α ∈R is continuous. The following theorem offers a weaker analogue

of this fact in the context of stochastic integration.

THEOREM 8. For every α ∈ Ω1(M), the map (0,T ] ∋ t 7→ IntP,t(α)◦ res[0,t] ∈ L0(CT ) is continuous.

6. CONCLUSION AND ACKNOWLEDGEMENTS

The main aim has been to show how to give an alternative construction of some basic objects in stochastic
analysis using only functional-analytic tools, without it being necessary to resort to probability-theoretical con-
cepts or techniques. Another aim has been to advance a point of view allowing the entire subject of stochastic
integration to be seen unravelling from a small number of fundamental ideas, along lines emphasizing the deep
analogies with curvilinear integration. The strategy adopted herein has allowed the classification of stochastic
integrals and the exhibition of the simple relationship connecting any two of them.

From a technical point of view, since all the objects involved were intrinsic to the manifold M, we have
obtained that their construction be intrinsic, too. This differs from the approach that other stochastic analysis
on manifolds textbooks use (for instance [6]), which resort to embedding the underlying manifold in Euclidean
spaces using Whitney’s theorem, thus using extrinsic geometrical tools to obtain intrinsic results. We have also
attempted to keep the prerequisites to a minimum, using only a handful of basic functional-analytic tools. Once
the foundations of this construction are laid down, developing the various properties of stochastic integrals
becomes much easier than in the traditional probability-theoretic textbooks. We have thus not needed to use
Cartan’s rolling map, as it is done in [4]. Neither has it been necessary to choose an interpolation rule, as done
in [5] (which requires the use of the measurable selection theorem, checking the hypotheses of which further
requires working with the Whitney topology on the space of smooth curves in M), its role being taken on by
the cut-off function χ as well as by the truncation by 0 of the expression

∫
[0,1] αγx,y(τ)(γ̇x,y(τ))dP(τ) for y far

away from x. Unlike in [3], M is not required to be compact. We have also not needed to work with second
order tangent vectors and Laurent Schwartz’ second order differential geometry, as done by Émery. This parsi-
monious use of fundamental concepts and technical means has been one of the driving goals of the present text
which is built upon the belief that conceptual and technical minimality must be an imperative of any intellectual
construction.
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The key points to remember from this article are:

• the approximations c 7→∑
2k−1
j=0 IP(α)

(
c
(

jt
2k

)
,c
(
( j+1)t

2k

))
converge in measure to a limit denoted IntP,t(α),

for every regular Borel probability P on the interval [0,1] ; called ”the stochastic integral corresponding to P”;

• Intδ0,t is the Itô integral and if P=Leb[0,1], or P= δ 1
2
, or P= 1

2(δ0+δ1), then the corresponding stochastic
integral IntP,t is the Stratonovich integral;

• for any probabilities P and Q as above, IntP,t(α)(c)= IntQ,t(α)(c)−2
∫
[0,1] τ d(P−Q)(τ)

∫ t
0(d

∗α)(c(s))ds.

Reaching the end of this work, it is a pleasure to thank Mr. Radu Purice and Mr. Lucian Beznea from
the ”Simion Stoilow” Institute of Mathematics of the Romanian Academy for the discussions from which this
article emerged.
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