BOUNDS OF THE THIRD AND THE FOURTH LOGARITHMIC COEFFICIENTS FOR CLOSE-TO-CONVEX FUNCTIONS

Anna FUTA ${ }^{1}$, Magdalena JASTRZȨBSKA ${ }^{1}$, Paweł ZAPRAWA ${ }^{2}$
${ }^{1}$ Lublin University of Technology, Department of Applied Mathematics Nadbystrzycka, 38, 20-618 Lublin, Poland
${ }^{2}$ Lublin University of Technology, Faculty of Mechanical Engineering
Nadbystrzycka, 36, 20-618 Lublin, Poland
Corresponding author: Magdalena JASTRZȨBSKA, E-mail: m. jastrzebska@pollub.pl

Abstract

In this paper we study coefficient problems in some subclasses of close-to-convex functions. More precisely, we determine the upper bounds of the third and the fourth logarithmic coefficients, γ_{3} and γ_{4}, for functions in some subclasses of analytic and univalent functions in the unit disc \mathbb{D}. In our research we use not only classical results, but also recent results obtained by Efraimidis.

Key words: coefficient problems, logarithmic coefficients, univalent functions, close-to-convex functions, Schwarz functions.
Mathematics Subject Classification (MSC2020): 30C45, 30C50.

1. INTRODUCTION

Let \mathbb{D} be the unit disk $\{z \in \mathbb{C}:|z|<1\}$ and \mathscr{A} denotes the class of all functions f analytic in \mathbb{D}, satisfying the condition $f(0)=f^{\prime}(0)-1=0$. It means that function $f \in \mathscr{A}$ has the following representation

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} . \tag{1}
\end{equation*}
$$

Let \mathscr{S} be the class of all functions in \mathscr{A} which are univalent in \mathbb{D}. The logarithmic coefficients of $f \in \mathscr{S}$, denoted by $\gamma_{n}=\gamma_{n}(f)$, are defined by

$$
\begin{equation*}
\frac{1}{2} \log \frac{f(z)}{z}=\sum_{n=1}^{\infty} \gamma_{n} z^{n} . \tag{2}
\end{equation*}
$$

The logarithmic coefficients γ_{n} are significant in the theory of univalent functions and play the important role in the proof of the well-known Bieberbach conjecture. The utility of the logarithmic coefficients in the context of Bieberbach conjecture was discovered by Milin [9], who conjectured that for $f \in \mathscr{S}$ and $n \geq 2$,

$$
\sum_{m=1}^{n} \sum_{k=1}^{m}\left(k\left|\gamma_{k}\right|^{2}-\frac{1}{k}\right) \leq 0
$$

In 1985, De Branges [4] proving Milin's conjecture confirmed the Bieberbach conjecture.
If f is of the form (1), then the logarithmic coefficients are given by

$$
\begin{align*}
\gamma_{1} & =\frac{1}{2} a_{2} \\
\gamma_{2} & =\frac{1}{2}\left(a_{3}-\frac{1}{2} a_{2}^{2}\right) \\
\gamma_{3} & =\frac{1}{2}\left(a_{4}-a_{2} a_{3}+\frac{1}{3} a_{2}^{3}\right) \tag{3}\\
\gamma_{4} & =\frac{1}{2}\left(a_{5}-a_{2} a_{4}+a_{2}^{2} a_{3}-\frac{1}{2} a_{3}^{2}-\frac{1}{4} a_{2}^{4}\right) \\
\gamma_{5} & =\frac{1}{2}\left(a_{6}-a_{2} a_{5}-a_{3} a_{4}+a_{2} a_{3}^{2}+a_{2}^{2} a_{4}-a_{2}^{3} a_{3}+\frac{1}{5} a_{2}^{5}\right)
\end{align*}
$$

Hence, if $f \in \mathscr{S}$, it is easy to see that $\left|\gamma_{1}\right| \leq 1$ with equality for the Koebe function $f(z)=\frac{z}{(1-z)^{2}}$. For this function, it is known that $\gamma_{n}=\frac{1}{n}$ for $n \in \mathbb{N}$. Since the Koebe function occurs as an extremal function for most of the extremal problems in the class \mathscr{S}, it is expected that $\left|\gamma_{n}\right| \leq \frac{1}{n}$ for $f \in \mathscr{S}$ and $n \in \mathbb{N}$. Nevertheless, it is not true in general. Namely, it does not hold even for γ_{2}. The Fekete-Szegö inequality leads to $\left|\gamma_{2}\right| \leq$ $\frac{1}{2}\left(1+2 e^{-2}\right)=0.635 \ldots$. Also, in 2020 Obradović and Tuneski proved that $\left|\gamma_{3}\right| \leq \frac{\sqrt{133}}{15}$ for all $f \in \mathscr{S}$, see [10]. The problem of finding the sharp upper bounds for $\left|\gamma_{n}\right|$ for $f \in \mathscr{S}$ is still open for $n \geq 3$. However, if $f \in \mathscr{S}^{*}$, the class of starlike functions, the inequality $\left|\gamma_{n}\right| \leq \frac{1}{n}$ holds for $n \in \mathbb{N}$, see [12].

Taking into account selected subclasses of the class \mathscr{S}, some partial results concerning logarithmic coefficients are known. Particularly, the upper bounds of γ_{n} for the class of strongly starlike functions of order $\beta(0<\beta \leq 1)$ were obtained by Thomas in [13|, that is $\left|\gamma_{n}\right| \leq \frac{\beta}{n}, n \in \mathbb{N}$. Whereas, the results for γ-starlike functions were given by Darus and Thomas in [3]. Moreover, non-sharp estimates for the class of Bazilevič, close-to-convex and different subclasses of close-to-convex functions were examined in [6], [1] and [14], respectively.

The sharp upper estimates of $\left|\gamma_{3}\right|$ in subclasses $\mathscr{F}_{1}, \mathscr{F}_{2}, \mathscr{F}_{3}, \mathscr{F}_{4}$ of the class \mathscr{S} of functions f satisfying respectively the following conditions

$$
\begin{gather*}
\operatorname{Re}\left\{(1-z) f^{\prime}(z)\right\}>0, \quad z \in \mathbb{D} \tag{4}\\
\operatorname{Re}\left\{\left(1-z^{2}\right) f^{\prime}(z)\right\}>0, \quad z \in \mathbb{D} \tag{5}\\
\operatorname{Re}\left\{\left(1-z+z^{2}\right) f^{\prime}(z)\right\}>0, \quad z \in \mathbb{D} \tag{6}\\
\operatorname{Re}\left\{(1-z)^{2} f^{\prime}(z)\right\}>0, \quad z \in \mathbb{D} \tag{7}
\end{gather*}
$$

were investigated in [1], [8] and [2] with the additional assumptions about the coefficient a_{2}. Namely, the estimates related to \mathscr{F}_{k} are as follows

$$
\begin{gathered}
\left|\gamma_{3}\right| \leq \frac{1}{288}(11+15 \sqrt{30})=0.3234 \ldots \text { for } f \in \mathscr{F}_{1} \text { and } \frac{1}{2} \leq a_{2} \leq \frac{3}{2} \\
\left|\gamma_{3}\right| \leq \frac{1}{972}(95+23 \sqrt{46})=0.2582 \ldots \text { for } f \in \mathscr{F}_{2} \text { and } 0 \leq a_{2} \leq 1, \\
\left|\gamma_{3}\right| \leq \frac{1}{7776}(743+131 \sqrt{262})=0.3682 \ldots \text { for } f \in \mathscr{F}_{3} \text { and } \frac{1}{2} \leq a_{2} \leq \frac{3}{2}, \\
\left|\gamma_{3}\right| \leq \frac{1}{243}(28+19 \sqrt{19})=0.4560 \ldots \text { for } f \in \mathscr{F}_{4} \text { and } 1 \leq a_{2} \leq 2,
\end{gathered}
$$

These results were generalized for all real a_{2} by Cho et al. in [2].
In this paper we consider more general case, when a_{2} is an arbitrarily complex number. Despite the rejection of the assumption $a_{2} \in \mathbb{R}$, the derived results are only slightly worse than those obtained in [2].

It is worth noting that in Theorems 1, 2] and 3 we obtained similar results as in [2], the derived results are
slightly worse than the sharp bounds obtained in [2], differing at the level of hundredths in \mathscr{F}_{4}, thousandths in \mathscr{F}_{1} and \mathscr{F}_{3}, and ten-thousandths in \mathscr{F}_{2} but without any additional assumptions for the coefficient a_{2}. Furthermore, we derive the bounds of $\left|\gamma_{4}\right|$ in the same subclasses of \mathscr{S}.

Note that, each class $\mathscr{F}_{i}, i=1, \ldots 4$ is the subclass of the well-known class of close-to-convex functions. Since all of these classes have a representation by using the Carathéodory class \mathscr{P}, i.e., the class of functions of the form

$$
\begin{equation*}
p(z)=1+\sum_{n=1}^{\infty} p_{n} z^{n}, \quad z \in \mathbb{D}, \tag{8}
\end{equation*}
$$

having a positive real part in \mathbb{D}, so both γ_{3} and γ_{4} have a suitable representations expressed by the coefficients of functions in \mathscr{P}.

Denote by \mathscr{B}_{0} the class of Schwarz functions, i.e., the class of all analytic functions $\omega: \mathbb{D} \rightarrow \mathbb{D}, \omega(0)=0$. A function $\omega \in \mathscr{B}_{0}$ can be written as a power series

$$
\begin{equation*}
\omega(z)=\sum_{n=1}^{\infty} c_{n} z^{n} . \tag{9}
\end{equation*}
$$

There exists a close relationship between the class \mathscr{P} and the class \mathscr{B}_{0}. Namely, $p=\frac{1+\omega}{1-\omega}$ is in \mathscr{P} if and only if $\omega \in \mathscr{B}_{0}$. From this relation we conclude that

$$
\begin{array}{r}
p_{1}=2 c_{1}, p_{2}=2\left(c_{2}+c_{1}^{2}\right), p_{3}=2\left(c_{3}+2 c_{1} c_{2}+c_{1}^{3}\right), \tag{10}\\
p_{4}=2\left(c_{4}+2 c_{1} c_{3}+c_{2}^{2}+3 c_{1}^{2} c_{2}+c_{1}^{4}\right) .
\end{array}
$$

To prove our results we need the following lemmas for Schwarz functions obtained by Prokhorov and Szynal [11] and Carlson [5].

LEMMA 1. Let $\omega(z)=c_{1} z+c_{2} z^{2}+\cdots$ be a Schwarz function. Then

$$
\left|c_{2}\right| \leq 1-\left|c_{1}\right|^{2}, \quad\left|c_{3}\right| \leq 1-\left|c_{1}\right|^{2}-\frac{\left|c_{2}\right|^{2}}{1+\left|c_{1}\right|}, \quad\left|c_{4}\right| \leq 1-\left|c_{1}\right|^{2}-\left|c_{2}\right|^{2} .
$$

We also need the results obtained by Efraimidis (see, [7]).
LEMMA 2. Let $\omega=c_{1} z+c_{2} z^{2}+\ldots$ be a Schwarz function and $\lambda \in \mathbb{C}$. Then

$$
\begin{gather*}
\left|c_{3}+(1+\lambda) c_{1} c_{2}+\lambda c_{1}^{3}\right| \leq \max \{1,|\lambda|\} \tag{11}\\
\left|c_{3}+2 \lambda c_{1} c_{2}+\lambda^{2} c_{1}^{3}\right| \leq \max \left\{1,|\lambda|^{2}\right\} \tag{12}
\end{gather*}
$$

and

$$
\begin{gather*}
\left|c_{4}+(1+\lambda) c_{1} c_{3}+c_{2}^{2}+(1+2 \lambda) c_{1}^{2} c_{2}+\lambda c_{1}^{4}\right| \leq \max \{1,|\lambda|\} \tag{13}\\
\left|c_{4}+2 c_{1} c_{3}+\lambda c_{2}^{2}+(1+2 \lambda) c_{1}^{2} c_{2}+\lambda c_{1}^{4}\right| \leq \max \{1,|\lambda|\} . \tag{14}
\end{gather*}
$$

2. ESTIMATES FOR THE $\boldsymbol{\gamma}_{3}$

To obtain our results we apply a different approach than those used in [1,3.9]. In order to estimate γ_{3} we express it by coefficients of Schwarz functions.

THEOREM 1. If $f \in \mathscr{F}_{1}$, then

$$
\left|\gamma_{3}\right| \leq \frac{21}{64}
$$

Proof. Let $f \in \mathscr{F}_{1}$ be of the form (1). Then there exists $p \in \mathscr{P}$ of the form (8) such that

$$
\begin{equation*}
(1-z) f^{\prime}(z)=p(z), \quad z \in \mathbb{D} \tag{15}
\end{equation*}
$$

Substituting the series (1) and (8) into (15) and equating the coefficients we get

$$
\begin{align*}
& a_{2}=\frac{1}{2}\left(1+p_{1}\right) \\
& a_{3}=\frac{1}{3}\left(1+p_{1}+p_{2}\right) \tag{16}\\
& a_{4}=\frac{1}{4}\left(1+p_{1}+p_{2}+p_{3}\right) \\
& a_{5}=\frac{1}{5}\left(1+p_{1}+p_{2}+p_{3}+p_{4}\right) .
\end{align*}
$$

By (3) and (16) we get

$$
\gamma_{3}=\frac{1}{48}\left(p_{1}-p_{1}^{2}+p_{1}^{3}-4 p_{1} p_{2}+2 p_{2}+6 p_{3}+3\right) .
$$

Using now (10) we have

$$
\gamma_{3}=\frac{1}{48}\left(4 c_{1}^{3}+8 c_{1} c_{2}+2 c_{1}+4 c_{2}+12 c_{3}+3\right) .
$$

Then obviously

$$
\left|\gamma_{3}\right| \leq \frac{1}{48}\left(4\left|c_{1}\right|^{3}+8\left|c_{1}\right|\left|c_{2}\right|+2\left|c_{1}\right|+4\left|c_{2}\right|+12\left|c_{3}\right|+3\right)
$$

and applying Lemma 1 we get

$$
\left|\gamma_{3}\right| \leq \frac{1}{48}\left(4\left|c_{1}\right|^{3}+8\left|c_{1}\right|\left|c_{2}\right|+2\left|c_{1}\right|+4\left|c_{2}\right|+12\left(1-\left|c_{1}\right|^{2}-\frac{\left|c_{2}\right|^{2}}{1+\left|c_{1}\right|}\right)+3\right) .
$$

Let $h_{1}(x, y)$ denotes the right hand side of the above inequality with $x=\left|c_{1}\right|$ and $y=\left|c_{2}\right|$. Then

$$
h_{1}(x, y)=\frac{1}{48}\left(4 x^{3}+8 x y+2 x+4 y+12\left(1-x^{2}-\frac{y^{2}}{1+x}\right)+3\right) .
$$

The shape of the region of variability of (x, y) is a simple consequence of the Schwarz-Pick Lemma. It coincides with

$$
\begin{equation*}
\Omega=\left\{(x, y): 0 \leq x \leq 1,0 \leq y \leq 1-x^{2}\right\} . \tag{17}
\end{equation*}
$$

The critical points of h_{1} are the solutions of the system

$$
\left\{\begin{array}{l}
12 x^{2}+\frac{12 y^{2}}{(x+1)^{2}}-24 x+8 y+2=0 \\
-\frac{24 y}{x+1}+8 x+4=0 .
\end{array}\right.
$$

Hence, the only critical point of h_{1} in Ω is $\left(\frac{1}{4}, \frac{5}{16}\right)$ and $h_{1}\left(\frac{1}{4}, \frac{5}{16}\right)=\frac{21}{64}$. Now, it is enough to derive the greatest value of h_{1} on the boundary of Ω. We have the following

$$
\begin{aligned}
& h_{1}(x, 0)=\frac{1}{48}\left(4 x^{3}-12 x^{2}+2 x+15\right) \leq \frac{3}{16}+\frac{5 \sqrt{\frac{5}{6}}}{36}=0.3142 \ldots \\
& h_{1}(0, y)=\frac{1}{48}\left(4 y+15-12 y^{2}\right) \leq \frac{23}{72} \\
& h_{1}\left(x, 1-x^{2}\right)=\frac{1}{48}\left(-16 x^{3}-4 x^{2}+22 x+7\right) \leq \frac{278+67 \sqrt{67}}{2592}=0.3188 \ldots .
\end{aligned}
$$

Combinig all these inequalities we get

$$
h_{1}(x, y) \leq \frac{21}{64} \quad \text { for all } \quad(x, y) \in \Omega,
$$

which results in the desired bound.

THEOREM 2. If $f \in \mathscr{F}_{2}$, then

$$
\left|\gamma_{3}\right| \leq 0.2587 \ldots
$$

Proof. Suppose that $f \in \mathscr{F}_{2}$ is given by (1). Then there exists $p \in \mathscr{P}$ of the form (8) such that

$$
\begin{equation*}
\left(1-z^{2}\right) f^{\prime}(z)=p(z), \quad z \in \mathbb{D} . \tag{18}
\end{equation*}
$$

Applying in (18) the expansions of f and p given by (1) and (8), we obtain

$$
\begin{align*}
& a_{2}=\frac{1}{2} p_{1} \\
& a_{3}=\frac{1}{3}\left(1+p_{2}\right) \\
& a_{4}=\frac{1}{4}\left(p_{1}+p_{3}\right) \tag{19}\\
& a_{5}=\frac{1}{5}\left(1+p_{2}+p_{4}\right) .
\end{align*}
$$

Using (3) and (19) we have

$$
\gamma_{3}=\frac{1}{48}\left(p_{1}^{3}+2 p_{1}-4 p_{1} p_{2}+6 p_{3}\right) .
$$

From (10) we get

$$
\gamma_{3}=\frac{1}{12}\left(c_{1}^{3}+2 c_{1} c_{2}+c_{1}+3 c_{3}\right) .
$$

Hence from the triangle inequality we have

$$
\left|\gamma_{3}\right| \leq \frac{1}{12}\left(\left|c_{1}\right|^{2}+2\left|c_{1}\right|\left|c_{2}\right|+\left|c_{1}\right|+3\left|c_{3}\right|\right) .
$$

Now, using Lemma 1 we get

$$
\left|\gamma_{3}\right| \leq \frac{1}{12}\left(\left|c_{1}\right|^{3}+2\left|c_{1}\right|\left|c_{2}\right|+\left|c_{1}\right|+3\left(1-\left|c_{1}\right|^{2}-\frac{\left|c_{2}\right|^{2}}{1+\left|c_{1}\right|}\right)\right) .
$$

Let us denote by $h_{2}(x, y)$ the right hand side of the above inequality, where $x=\left|c_{1}\right|$ and $y=\left|c_{2}\right|$. Therefore,

$$
h_{2}(x, y)=\frac{1}{12}\left(x^{3}+2 x y+x+3-3 x^{2}-\frac{3 y^{2}}{1+x}\right) .
$$

From

$$
\left\{\begin{array}{l}
3 x^{2}+\frac{3 y^{2}}{(x+1)^{2}}-6 x+2 y+1=0 \\
x-\frac{3 y}{x+1}=0
\end{array}\right.
$$

it follows that $(0.2257 \ldots, 0.0922 \ldots)$ is the only critical point of h_{2} in Ω. In this case $h_{2}(0.2257 \ldots, 0.0922 \ldots)=$ 0.2587 ..

To complete the proof we need to verify the behavior of the function h_{2} on the boundary of Ω. We have

$$
\begin{aligned}
& h_{2}(x, 0)=\frac{1}{12}\left(3+x-3 x^{2}+x^{3}\right) \leq \frac{1}{54}(9+2 \sqrt{6})=0.2573 \ldots \\
& h_{2}(0, y)=\frac{1}{4}\left(1-y^{2}\right) \leq \frac{1}{4} \\
& h_{2}\left(x, 1-x^{2}\right)=\frac{1}{6}\left(3 x-2 x^{3}\right) \leq \frac{1}{3 \sqrt{2}}=0.2357 \ldots
\end{aligned}
$$

Taking everything into account we obtain

$$
h_{2}(x, y) \leq 0.2587 \ldots
$$

This ends the proof of the theorem.

THEOREM 3. If $f \in \mathscr{F}_{3}$, then

$$
\left|\gamma_{3}\right| \leq \frac{71}{192}
$$

Proof. Assume that $f \in \mathscr{F}_{3}$ is of the form (1). Then there exists $p \in \mathscr{P}$ of the form (8) such that

$$
\begin{equation*}
\left(1-z+z^{2}\right) f^{\prime}(z)=p(z), \quad z \in \mathbb{D} \tag{20}
\end{equation*}
$$

Putting the series (1) and (8) into (20) by equating the coefficients we get

$$
\begin{align*}
& a_{2}=\frac{1}{2}\left(1+p_{1}\right) \\
& a_{3}=\frac{1}{3}\left(p_{1}+p_{2}\right) \tag{21}\\
& a_{4}=\frac{1}{4}\left(p_{2}+p_{3}-1\right) \\
& a_{5}=\frac{1}{5}\left(p_{3}+p_{4}-p_{1}-1\right) .
\end{align*}
$$

By (3) and (21) we obtain

$$
\gamma_{3}=\frac{1}{48}\left(p_{1}^{3}-p_{1}^{2}-p_{1}+2 p_{2}-4 p_{1} p_{2}+6 p_{3}-5\right) .
$$

Again, applying (10) we have

$$
\gamma_{3}=\frac{1}{48}\left(4 c_{1}^{3}+8 c_{1} c_{2}-2 c_{1}+4 c_{2}+12 c_{3}-5\right) .
$$

The traingle inequality and Lemma 1 result in

$$
\begin{aligned}
\left|\gamma_{3}\right| & \leq \frac{1}{48}\left(4\left|c_{1}\right|^{3}+8\left|c_{1}\right|\left|c_{2}\right|+2\left|c_{1}\right|+4\left|c_{2}\right|+12\left(1-\left|c_{1}\right|^{2}-\frac{\left|c_{2}\right|^{2}}{1+\left|c_{1}\right|}\right)+5\right) \\
& =h_{1}\left(\left|c_{1}\right|,\left|c_{2}\right|\right)+\frac{1}{24}
\end{aligned}
$$

where h_{1} is defined in the proof of Theorem 1 .
Therefore, from Theorem 1 , the declared result follows.

THEOREM 4. If $f \in \mathscr{F}_{4}$, then

$$
\left|\gamma_{3}\right| \leq \frac{185}{384}
$$

Proof. Let $f \in \mathscr{F}_{4}$ be of the form (1). Then there exists $p \in \mathscr{P}$ of the form (8) such that

$$
\begin{equation*}
(1-z)^{2} f^{\prime}(z)=p(z), \quad z \in \mathbb{D} . \tag{22}
\end{equation*}
$$

Substituting the series (1) and (8) into (22) and equating the coefficients we get

$$
\begin{align*}
& a_{2}=\frac{1}{2}\left(p_{1}+2\right) \\
& a_{3}=\frac{1}{3}\left(2 p_{1}+p_{2}+3\right) \tag{23}\\
& a_{4}=\frac{1}{4}\left(3 p_{1}+2 p_{2}+p_{3}+4\right) \\
& a_{5}=\frac{1}{5}\left(4 p_{1}+3 p_{2}+2 p_{3}+p_{4}+5\right) .
\end{align*}
$$

From (3) and (23) we get

$$
\gamma_{3}=\frac{1}{48}\left(p_{1}^{3}-2 p_{1}^{2}+2 p_{1}-4 p_{1} p_{2}+4 p_{2}+6 p_{3}+8\right)
$$

and, using (10),

$$
\gamma_{3}=\frac{1}{12}\left(c_{1}^{3}+2 c_{1} c_{2}+c_{1}+2 c_{2}+3 c_{3}+2\right)
$$

From (11), the traingle inequality and Lemma 1 we get

$$
\begin{aligned}
\left|\gamma_{3}\right| & \leq \frac{1}{12}\left|\left(c_{3}+2 c_{1} c_{2}+c_{1}^{3}\right)+2 c_{3}+2 c_{2}+c_{1}+2\right| \\
& \leq \frac{1}{12}\left(1+2\left(1-\left|c_{1}\right|^{2}-\frac{\left|c_{2}\right|^{2}}{1+\left|c_{1}\right|}\right)+2\left|c_{2}\right|+\left|c_{1}\right|+2\right)
\end{aligned}
$$

Denote by $h_{4}(x, y)$ the right hand side of the above inequality with $x=\left|c_{1}\right|$ and $y=\left|c_{2}\right|$. Then

$$
h_{4}(x, y)=\frac{1}{12}\left(5+x-2 x^{2}+2 y-\frac{2 y^{2}}{1+x}\right)
$$

Now we consider the system

$$
\left\{\begin{array}{l}
1-4 x+\frac{2 y^{2}}{(1+x)^{2}}=0 \\
2-\frac{4 y}{1+x}=0
\end{array}\right.
$$

Therefore, the only critical point of h_{4} in Ω is $\left(\frac{3}{8}, \frac{11}{16}\right)$ and $h_{4}\left(\frac{3}{8}, \frac{11}{16}\right)=\frac{185}{384}$.
On the boundary of the set Ω, we have

$$
\begin{aligned}
& h_{4}(x, 0)=\frac{1}{12}\left(5+x-2 x^{2}\right) \leq \frac{41}{96} \\
& h_{4}(0, y)=\frac{1}{12}\left(5+2 y-2 y^{2}\right) \leq \frac{11}{24} \\
& h_{4}\left(x, 1-x^{2}\right)=\frac{1}{12}\left(5+3 x-2 x^{2}-2 x^{3}\right) \leq \frac{1}{324}(104+11 \sqrt{22})=0.4802 \ldots
\end{aligned}
$$

Finally, we obtain

$$
h_{4}(x, y) \leq \frac{185}{384}
$$

which ends the proof.

3. ESTIMATES FOR THE $\boldsymbol{\gamma}_{4}$

Now we will prove the results concerning the bounds of γ_{4} for \mathscr{F}_{k}. For this purpose we will use the results obtained by Efraimidis.

THEOREM 5. If $f \in \mathscr{F}_{1}$, then

$$
\left|\gamma_{4}\right| \leq 0.3245 \ldots
$$

Proof. Let $f \in \mathscr{F}_{1}$ be of the form (11). Using (3) and (16) we get

$$
\begin{aligned}
\gamma_{4} & =\frac{1}{5760}\left(-45 p_{1}^{4}+60 p_{1}^{3}+240 p_{1}^{2} p_{2}-70 p_{1}^{2}-200 p_{1} p_{2}-360 p_{1} p_{3}+76 p_{1}\right. \\
& \left.-160 p_{2}^{2}+136 p_{2}+216 p_{3}+576 p_{4}+251\right)
\end{aligned}
$$

Applying now (10) we obtain

$$
\begin{aligned}
\left|\gamma_{4}\right| & \left.=\frac{1}{5760} \right\rvert\, 864 c_{1} c_{3}+432 c_{3}+512 c_{2}^{2}+1216 c_{1}^{2} c_{2}+64 c_{1} c_{2}+272 c_{2}+272 c_{1}^{4} \\
& +112 c_{1}^{3}-8 c_{1}^{2}+152 c_{1}+1152 c_{4}+251 \mid
\end{aligned}
$$

Using the triangle inequality we have

$$
\left|\gamma_{4}\right| \leq \frac{1}{5760}\left(432 S_{1}+80 S_{2}+32 S_{3}+S_{4}\right)
$$

where

$$
\begin{aligned}
& S_{1}=\left|c_{4}+2 c_{1} c_{3}+c_{2}^{2}+3 c_{1}^{2} c_{2}+c_{1}^{4}\right| \leq 1 \text { by }(13) \text { with } \lambda=1 \\
& \left.S_{2}=\left|c_{4}+c_{2}^{2}-c_{1}^{2} c_{2}-c_{1}^{4}\right| \leq 1 \text { by } 13\right) \text { with } \lambda=-1 \\
& S_{3}=\left|c_{3}+2 c_{1} c_{2}+c_{1}^{3}\right| \leq 1 \text { by with } \lambda=1 \\
& S_{4}=\left|400 c_{3}+80 c_{1}^{3}+640 c_{4}-80 c_{1}^{4}+272 c_{2}-8 c_{1}^{2}+152 c_{1}+251\right|
\end{aligned}
$$

Applying the triangle inequality once more we have

$$
\left|\gamma_{4}\right| \leq \frac{1}{5760}\left[795+400\left|c_{3}\right|+80\left|c_{1}\right|^{3}+640\left|c_{4}\right|+80\left|c_{1}\right|^{4}+272\left|c_{2}\right|+8\left|c_{1}\right|^{2}+152\left|c_{1}\right|\right]
$$

Now, by Lemma 1, we receive

$$
\begin{aligned}
\left|\gamma_{4}\right| & \leq \frac{1}{5760}\left(640\left(1-\left|c_{1}\right|^{2}-\left|c_{2}\right|^{2}\right)+400\left(1-\left|c_{1}\right|^{2}-\frac{\left|c_{2}\right|^{2}}{1+\left|c_{1}\right|}\right)\right. \\
& \left.+272\left|c_{2}\right|+80\left|c_{1}\right|^{4}+80\left|c_{1}\right|^{3}+8\left|c_{1}\right|^{2}+152\left|c_{1}\right|+795\right) \leq g_{1}\left(\left|c_{1}\right|,\left|c_{2}\right|\right)
\end{aligned}
$$

where

$$
g_{1}(x, y)=\frac{1}{5760}\left(80 x^{4}+80 x^{3}-1032 x^{2}+152 x-640 y^{2}+272 y+1835\right)
$$

The critical points of g_{1} are the solutions of the system

$$
\left\{\begin{array}{l}
40 x^{3}+30 x^{2}-258 x+19=0 \\
272-1280 y=0
\end{array}\right.
$$

Taking into account the second equation we get rational solution of the form $y_{0}=\frac{17}{80}$, whereas $x_{0}=0.0743 \ldots$ is the solution of the polynomial of the third degree. So, the value of g_{1} at this point is $g_{1}\left(0.0743 \ldots, \frac{17}{80}\right)=$ 0.3245....

Now, we need to find the gratest value of g_{1} on the boundary of Ω. We have

$$
\begin{aligned}
& g_{1}(x, 0)=\frac{80 x^{4}+80 x^{3}-1032 x^{2}+152 x+1835}{5760} \leq 0.3195 \ldots \\
& g_{1}(0, y)=\frac{-640 y^{2}+272 y+1835}{5760} \leq \frac{2071}{6400} \\
& g_{1}\left(x, 1-x^{2}\right)=\frac{-560 x^{4}+80 x^{3}-24 x^{2}+152 x+1467}{5760} \leq 0.2630 \ldots
\end{aligned}
$$

Finally, we obtain

$$
g_{1}(x, y) \leq 0.3245 \ldots
$$

which gives the desired result.

THEOREM 6. If $f \in \mathscr{F}_{2}$, then

$$
\left|\gamma_{4}\right| \leq \frac{29}{100}
$$

Proof. Assume that $f \in \mathscr{F}_{2}$ be of the form (1). Then from (3) and (19) we obtain

$$
\gamma_{4}=\frac{1}{5760}\left(-45 p_{1}^{4}+240 p_{1}^{2} p_{2}-120 p_{1}^{2}-360 p_{1} p_{3}-160 p_{2}^{2}+256 p_{2}+576 p_{4}+416\right)
$$

and from 10)

$$
\left|\gamma_{4}\right|=\frac{1}{360}\left|54 c_{1} c_{3}+32 c_{2}^{2}+76 c_{1}^{2} c_{2}+32 c_{2}+17 c_{1}^{4}+2 c_{1}^{2}+72 c_{4}+26\right|
$$

By the triangle inequality we obtain

$$
\left|\gamma_{4}\right| \leq \frac{1}{360}\left(27 S_{1}+5 S_{2}+S_{3}\right)
$$

where

$$
\begin{aligned}
& \left.S_{1}=\left|c_{4}+2 c_{1} c_{3}+c_{2}^{2}+3 c_{1}^{2} c_{2}+c_{1}^{4}\right| \leq 1 \text { by } 13\right) \text { with } \lambda=1 \\
& S_{2}=\left|c_{4}+c_{2}^{2}-c_{1}^{2} c_{2}-c_{1}^{4}\right| \leq 1 \text { by } 13 \mid \text { with } \lambda=-1 \\
& S_{3}=\left|40 c_{4}-5 c_{1}^{4}+32 c_{2}+2 c_{1}^{2}+26\right|
\end{aligned}
$$

Consequently,

$$
\left|\gamma_{4}\right| \leq \frac{1}{360}\left(58+40\left|c_{4}\right|+5\left|c_{1}\right|^{4}+32\left|c_{2}\right|+2\left|c_{1}\right|^{2}\right)
$$

By Lemma 1 ,

$$
\left|\gamma_{4}\right| \leq \frac{1}{360}\left(58+40\left(1-\left|c_{1}\right|^{2}-\left|c_{2}\right|^{2}\right)+5\left|c_{1}\right|^{4}+32\left|c_{2}\right|+2\left|c_{1}\right|^{2}\right)=g_{2}\left(\left|c_{1}\right|,\left|c_{2}\right|\right)
$$

where

$$
g_{2}(x, y)=\frac{1}{360}\left(98-38 x^{2}-40 y^{2}+5 x^{4}+32 y\right)
$$

It is easy to check that there are no critical points inside the set Ω. Now, it is enough to examine the behavior
of g_{2} on the boundary of Ω. Hence,

$$
\begin{aligned}
& g_{2}(x, 0)=\frac{1}{360}\left(98-38 x^{2}+5 x^{4}\right) \leq \frac{49}{180} \\
& g_{2}(0, y)=\frac{1}{360}\left(98-40 y^{2}+32 y\right) \leq \frac{29}{100} \\
& g_{2}\left(x, 1-x^{2}\right)=\frac{1}{72}\left(18+2 x^{2}-7 x^{4}\right) \leq \frac{127}{504} .
\end{aligned}
$$

Taking into account all these inequalities we have

$$
g_{2}(x, y) \leq \frac{29}{100}
$$

which ends the proof of the theorem.
THEOREM 7. If $f \in \mathscr{F}_{3}$, then

$$
\left|\gamma_{4}\right| \leq 0.3287 \ldots
$$

Proof. Let $f \in \mathscr{F}_{3}$ be of the form (11). Using (3) and (21) we have

$$
\begin{aligned}
\gamma_{4} & =\frac{1}{5760}\left(576 p_{4}+216 p_{3}-360 p_{1} p_{3}-160 p_{2}^{2}+240 p_{1}^{2} p_{2}-200 p_{1} p_{2}-120 p_{2}\right. \\
& \left.-45 p_{1}^{4}+60 p_{1}^{3}+50 p_{1}^{2}-156 p_{1}-261\right) .
\end{aligned}
$$

By (10),

$$
\begin{aligned}
\left|\gamma_{4}\right| & \left.=\frac{1}{5760} \right\rvert\, 864 c_{1} c_{3}+432 c_{3}+512 c_{2}^{2}+1216 c_{1}^{2} c_{2}+64 c_{1} c_{2}-240 c_{2} \\
& +272 c_{1}^{4}+112 c_{1}^{3}-40 c_{1}^{2}-312 c_{1}+1152 c_{4}-261 \mid .
\end{aligned}
$$

Hence,

$$
\left|\gamma_{4}\right| \leq \frac{1}{5760}\left(432 S_{1}+80 S_{2}+S_{3}\right)
$$

where

$$
\begin{aligned}
& S_{1}=\left|c_{4}+2 c_{1} c_{3}+c_{2}^{2}+3 c_{1}^{2} c_{2}+c_{1}^{4}\right| \leq 1 \text { by (13) with } \lambda=1, \\
& S_{2}=\left|c_{4}+c_{2}^{2}-c_{1}^{2} c_{2}-c_{1}^{4}\right| \leq 1 \text { by } 13 \text { with } \lambda=-1, \\
& S_{3}=\left|640 c_{4}-80 c_{1}^{4}+432 c_{3}+64 c_{1} c_{2}-240 c_{2}+112 c_{1}^{3}-40 c_{1}^{2}-312 c_{1}+261\right| .
\end{aligned}
$$

The triangle inequality and Lemma 1 results in

$$
\begin{aligned}
\left|\gamma_{4}\right| & \leq \frac{1}{5760}\left(773+640\left(1-\left|c_{1}\right|^{2}-\left|c_{2}\right|^{2}\right)+80\left|c_{1}\right|^{4}+432\left(1-\left|c_{1}\right|^{2}\right)\right. \\
& \left.+64\left|c_{1}\right|\left|c_{2}\right|+240\left|c_{2}\right|+112\left|c_{1}\right|^{3}+40\left|c_{1}\right|^{2}+312\left|c_{1}\right|\right)=g_{3}\left(\left|c_{1}\right|,\left|c_{2}\right|\right),
\end{aligned}
$$

where

$$
g_{3}(x, y)=\frac{1}{5760}\left(80 x^{4}+112 x^{3}-1032 x^{2}+64 x y+312 x-640 y^{2}+240 y+1845\right) .
$$

The critical points of g_{3} inside the set Ω coincide with the solution of the system of equations

$$
\left\{\begin{array}{l}
39-258 x+42 x^{2}+40 x^{3}+8 y=0 \\
15+4 x-80 y=0
\end{array}\right.
$$

There is only one critical point $(0.1621 \ldots, 0.1956 \ldots)$ and $g_{3}(0.1621 \ldots, 0.1956 \ldots)=0.3287 \ldots$ On the boundary of Ω,

$$
\begin{aligned}
& g_{3}(x, 0)=\frac{1}{5760}\left(1845+312 x-1032 x^{2}+112 x^{3}+80 x^{4}\right) \leq 0.3244 \ldots \\
& g_{3}(0, y)=\frac{1}{5760}\left(1845+240 y-640 y^{2}\right) \leq \frac{83}{256} \\
& g_{3}\left(x, 1-x^{2}\right)=\frac{1}{5760}\left(1445+376 x+8 x^{2}+48 x^{3}-560 x^{4}\right) \leq 0.2798 \ldots
\end{aligned}
$$

Finally, considering all the inequalities, we obtain

$$
g_{3}(x, y) \leq 0.3287 \ldots,
$$

which is the desired result.
THEOREM 8. If $f \in \mathscr{F}_{4}$, then

$$
\left|\gamma_{4}\right| \leq 0.5027 \ldots
$$

Proof. Let $f \in \mathscr{F}_{4}$ be of the form (11). Therefore, using (3) and (23), we have

$$
\begin{aligned}
\left|\gamma_{4}\right| & =\frac{1}{5760}\left(576 p_{4}+432 p_{3}-360 p_{1} p_{3}-160 p_{2}^{2}+240 p_{1}^{2} p_{2}-400 p_{1} p_{2}+288 p_{2}\right. \\
& \left.-45 p_{1}^{4}+120 p_{1}^{3}-160 p_{1}^{2}+144 p_{1}+720\right) .
\end{aligned}
$$

It is easy to conclude from (10) that

$$
\begin{aligned}
\left|\gamma_{4}\right| & \left.=\frac{1}{360} \right\rvert\, 54 c_{1} c_{3}+54 c_{3}+32 c_{2}^{2}+76 c_{1}^{2} c_{2}+8 c_{1} c_{2}+36 c_{2}+17 c_{1}^{4}+14 c_{1}^{3}-4 c_{1}^{2} \\
& +18 c_{1}+72 c_{4}+45 \mid .
\end{aligned}
$$

Using the triangle inequality, we obtain

$$
\left|\gamma_{4}\right| \leq \frac{1}{360}\left(27 S_{1}+5 S_{2}+S_{3}\right)
$$

where

$$
\begin{aligned}
& S_{1}=\left|c_{4}+2 c_{1} c_{3}+c_{2}^{2}+3 c_{1}^{2} c_{2}+c_{1}^{4}\right| \leq 1 \text { by (13) with } \lambda=1, \\
& S_{2}=\left|c_{4}+c_{2}^{2}-c_{1}^{2} c_{2}-c_{1}^{4}\right| \leq 1 \text { by (13) with } \lambda=-1, \\
& S_{3}=\left|40 c_{4}-5 c_{1}^{4}+54 c_{3}+8 c_{1} c_{2}+36 c_{2}+14 c_{1}^{3}-4 c_{1}^{2}+18 c_{1}+45\right| .
\end{aligned}
$$

By the triangle inequality and Lemma 1 ,

$$
\begin{aligned}
\left|\gamma_{4}\right| & \leq \frac{1}{360}\left(77+40\left(1-\left|c_{1}\right|^{2}-\left|c_{2}\right|^{2}\right)+5\left|c_{1}\right|^{4}+54\left(1-\left|c_{1}\right|^{2}-\frac{\left|c_{2}\right|^{2}}{1+\left|c_{1}\right|}\right)\right. \\
& \left.+8\left|c_{1}\right|\left|c_{2}\right|+36\left|c_{2}\right|+14\left|c_{1}\right|^{3}+4\left|c_{1}\right|^{2}+18\left|c_{1}\right|\right) \\
& \leq \frac{1}{360}\left(171+18\left|c_{1}\right|-90\left|c_{1}\right|^{2}+14\left|c_{1}\right|^{3}+5\left|c_{1}\right|^{4}+36\left|c_{2}\right|-40\left|c_{2}\right|^{2}\right. \\
& +8\left|c_{1}\right|\left(1-\left|c_{1}\right|^{2}\right)=g_{4}\left(\left|c_{1}\right|,\left|c_{2}\right|\right),
\end{aligned}
$$

where

$$
g_{4}(x, y)=\frac{1}{360}\left(171+26 x-90 x^{2}+6 x^{3}+5 x^{4}+36 y-40 y^{2}\right) .
$$

We can observe that $\left(0.1469 \ldots, \frac{9}{20}\right)$ is the only critical point of g_{4} inside the set Ω. Therefore, $g_{4}\left(0.1469 \ldots, \frac{9}{20}\right)=$ 0.5027 .

Moreover,

$$
\begin{aligned}
& g_{4}(x, 0)=\frac{1}{360}\left(171+26 x-90 x^{2}+6 x^{3}+5 x^{4}\right) \leq 0.4802 \ldots \\
& g_{4}(0, y)=\frac{1}{360}\left(171+36 y-40 y^{2}\right) \leq \frac{199}{400} \\
& g_{4}\left(x, 1-x^{2}\right)=\frac{1}{360}\left(167+26 x-46 x^{2}+6 x^{3}-35 x^{4}\right) \leq 0.4738 \ldots
\end{aligned}
$$

This means that

$$
g_{4}(x, y) \leq 0.5027 \ldots
$$

In this way we have proved the theorem.

REFERENCES

1. M.F. ALI, A. VASUDEVARAO, On logarithmic coefficients of some close-to-convex functions, Proceedings of the American Mathematical Society, 146, pp. 1131-1142, 2018.
2. N.E. CHO, B. KOWALCZYK, O.S. KWON, A. LECKO, Y.J. SIM, On the third logarithmic coefficient in some subclasses of close-to-convex functions, Revista de la Real Academia de Ciencias Exactas, 114, 52, 2020.
3. M. DARUS, D.K. THOMAS, α-logarithmically convex functions, Indian Journal of Pure and Applied Mathematics, 29, 10, pp. 1049-1059, 1998.
4. L. DE BRANGES, A proof of the Bieberbach conjecture, Acta Mathematica, 154, 1-2, pp. 137-152, 1985.
5. F. CARLSON, Sur les coefficients d'une fonction bornée dans le cercle unité, Arkiv för matematik, astronomi och fysik, 27A, 1 , pp. 8, 1940.
6. Q. DENG, On the logarithmic coefficients of Bazilevič functions, Applied Mathematics and Computation, 217, 12, pp. 5889-5894, 2011.
7. I. EFRAIMIDIS, A generalization of Livingston's coefficient inequalities for functions with positive real part, Journal of Mathematical Analysis and Applications, 435, pp. 369-379, 2016.
8. U.P. KUMAR, A. VASUDEVARAO, Logarithmic coefficients for certain subclasses of close-to-convex functions, Monatshefte für Mathematik, 187, pp. 543-563, 2018.
9. I.M. MILIN, Univalent functions and orthonormal systems (in Russian), Izdat. "Nauka", Moscow, 1971; English translation: American Mathematical Society, Providence, 1977.
10. M. OBRADOVIĆ, N. TUNESKI, The third logarithmic coefficient for the class S, Turkish Journal of Mathematics, 44, pp. 19501954, 2020.
11. D.V. PROKHOROV, J. SZYNAL, Inverse coefficients for (α, β)-convex functions, Annales Universitatis Mariae CurieSklodowska, sectio A, 35, pp. 125-143, 1981.
12. D.K. THOMAS, N. TUNESKI, A. VASUDEVARAO, Univalent functions: a primer, Walter de Gruyter GmbH \& Co KG, Berlin, 2018.
13. D.K. THOMAS, On the coefficients of strongly starlike functions, Indian Journal of Mathematics, 58, 2, pp. 135-146, 2016.
14. D.K. THOMAS, The logarithmic coefficients of close-to convex functions, Proceedings of the American Mathematical Society, 144, 2, pp. 1681-1687, 2016.
