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1. INTRODUCTION

Let D be the unit disk {z ∈ C : |z|< 1} and A denotes the class of all functions f analytic in D, satisfying
the condition f (0) = f ′(0)−1 = 0. It means that function f ∈ A has the following representation

f (z) = z+
∞

∑
n=2

anzn . (1)

Let S be the class of all functions in A which are univalent in D. The logarithmic coefficients of f ∈ S ,
denoted by γn = γn( f ), are defined by

1
2

log
f (z)

z
=

∞

∑
n=1

γnzn . (2)

The logarithmic coefficients γn are significant in the theory of univalent functions and play the important
role in the proof of the well-known Bieberbach conjecture. The utility of the logarithmic coefficients in the
context of Bieberbach conjecture was discovered by Milin [9], who conjectured that for f ∈ S and n ≥ 2,

n

∑
m=1

m

∑
k=1

(
k|γk|2 −

1
k

)
≤ 0 .

In 1985, De Branges [4] proving Milin’s conjecture confirmed the Bieberbach conjecture.
If f is of the form (1), then the logarithmic coefficients are given by
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γ1 =
1
2

a2

γ2 =
1
2

(
a3 −

1
2

a2
2

)
γ3 =

1
2

(
a4 −a2a3 +

1
3

a3
2

)
γ4 =

1
2

(
a5 −a2a4 +a2

2a3 −
1
2

a2
3 −

1
4

a4
2

)
γ5 =

1
2

(
a6 −a2a5 −a3a4 +a2a2

3 +a2
2a4 −a3

2a3 +
1
5

a5
2

)
.

(3)

Hence, if f ∈ S , it is easy to see that |γ1| ≤ 1 with equality for the Koebe function f (z) = z
(1−z)2 . For

this function, it is known that γn =
1
n for n ∈ N. Since the Koebe function occurs as an extremal function for

most of the extremal problems in the class S , it is expected that |γn| ≤ 1
n for f ∈ S and n ∈ N. Nevertheless,

it is not true in general. Namely, it does not hold even for γ2. The Fekete-Szegö inequality leads to |γ2| ≤
1
2

(
1+2e−2

)
= 0.635 . . .. Also, in 2020 Obradović and Tuneski proved that |γ3| ≤

√
133
15 for all f ∈ S , see [10].

The problem of finding the sharp upper bounds for |γn| for f ∈ S is still open for n ≥ 3. However, if f ∈ S ∗,
the class of starlike functions, the inequality |γn| ≤ 1

n holds for n ∈ N, see [12].
Taking into account selected subclasses of the class S , some partial results concerning logarithmic coef-

ficients are known. Particularly, the upper bounds of γn for the class of strongly starlike functions of order
β (0 < β ≤ 1) were obtained by Thomas in [13], that is |γn| ≤ β

n , n ∈ N. Whereas, the results for γ-starlike
functions were given by Darus and Thomas in [3]. Moreover, non-sharp estimates for the class of Bazilevič,
close-to-convex and different subclasses of close-to-convex functions were examined in [6], [1] and [14], re-
spectively.

The sharp upper estimates of |γ3| in subclasses F1 , F2 , F3 , F4 of the class S of functions f satisfying
respectively the following conditions

Re{(1− z) f ′(z)}> 0, z ∈ D (4)

Re{(1− z2) f ′(z)}> 0, z ∈ D (5)

Re{(1− z+ z2) f ′(z)}> 0, z ∈ D (6)

Re{(1− z)2 f ′(z)}> 0, z ∈ D (7)

were investigated in [1], [8] and [2] with the additional assumptions about the coefficient a2. Namely, the
estimates related to Fk are as follows

|γ3| ≤
1

288
(11+15

√
30) = 0.3234 . . . for f ∈ F1 and

1
2
≤ a2 ≤

3
2
, [8]

|γ3| ≤
1

972
(95+23

√
46) = 0.2582 . . . for f ∈ F2 and 0 ≤ a2 ≤ 1, [8]

|γ3| ≤
1

7776
(743+131

√
262) = 0.3682 . . . for f ∈ F3 and

1
2
≤ a2 ≤

3
2
, [8]

|γ3| ≤
1

243
(28+19

√
19) = 0.4560 . . . for f ∈ F4 and 1 ≤ a2 ≤ 2, [1]

These results were generalized for all real a2 by Cho et al. in [2].
In this paper we consider more general case, when a2 is an arbitrarily complex number. Despite the rejection

of the assumption a2 ∈ R, the derived results are only slightly worse than those obtained in [2].
It is worth noting that in Theorems 1, 2 and 3 we obtained similar results as in [2], the derived results are
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slightly worse than the sharp bounds obtained in [2], differing at the level of hundredths in F4, thousandths in
F1 and F3, and ten-thousandths in F2 but without any additional assumptions for the coefficient a2. Further-
more, we derive the bounds of |γ4| in the same subclasses of S .

Note that, each class Fi, i = 1, . . .4 is the subclass of the well-known class of close-to-convex functions.
Since all of these classes have a representation by using the Carathéodory class P , i.e., the class of functions
of the form

p(z) = 1+
∞

∑
n=1

pnzn, z ∈ D, (8)

having a positive real part in D, so both γ3 and γ4 have a suitable representations expressed by the coefficients
of functions in P .

Denote by B0 the class of Schwarz functions, i.e., the class of all analytic functions ω : D→ D, ω(0) = 0.
A function ω ∈ B0 can be written as a power series

ω(z) =
∞

∑
n=1

cnzn . (9)

There exists a close relationship between the class P and the class B0. Namely, p = 1+ω

1−ω
is in P if and

only if ω ∈ B0. From this relation we conclude that

p1 = 2c1, p2 = 2(c2 + c2
1), p3 = 2(c3 +2c1c2 + c3

1),

p4 = 2(c4 +2c1c3 + c2
2 +3c2

1c2 + c4
1) .

(10)

To prove our results we need the following lemmas for Schwarz functions obtained by Prokhorov and
Szynal [11] and Carlson [5].

LEMMA 1. Let ω(z) = c1z+ c2z2 + · · · be a Schwarz function. Then

|c2| ≤ 1−|c1|2, |c3| ≤ 1−|c1|2 −
|c2|2

1+ |c1|
, |c4| ≤ 1−|c1|2 −|c2|2 .

We also need the results obtained by Efraimidis (see, [7]).

LEMMA 2. Let ω = c1z+ c2z2 + . . . be a Schwarz function and λ ∈ C. Then

|c3 +(1+λ )c1c2 +λc3
1| ≤ max{1, |λ |} (11)

|c3 +2λc1c2 +λ
2c3

1| ≤ max{1, |λ |2} (12)

and
|c4 +(1+λ )c1c3 + c2

2 +(1+2λ )c2
1c2 +λc4

1| ≤ max{1, |λ |} (13)

|c4 +2c1c3 +λc2
2 +(1+2λ )c2

1c2 +λc4
1| ≤ max{1, |λ |} . (14)

2. ESTIMATES FOR THE γγγ3

To obtain our results we apply a different approach than those used in [1, 3, 9]. In order to estimate γ3 we
express it by coefficients of Schwarz functions.

THEOREM 1. If f ∈ F1, then

|γ3| ≤
21
64

.

Proof. Let f ∈ F1 be of the form (1). Then there exists p ∈ P of the form (8) such that

(1− z) f ′(z) = p(z), z ∈ D . (15)



208 Anna FUTA, Magdalena JASTRZȨBSKA, Paweł ZAPRAWA 4

Substituting the series (1) and (8) into (15) and equating the coefficients we get

a2 =
1
2
(1+ p1)

a3 =
1
3
(1+ p1 + p2)

a4 =
1
4
(1+ p1 + p2 + p3)

a5 =
1
5
(1+ p1 + p2 + p3 + p4) .

(16)

By (3) and (16) we get

γ3 =
1
48

(
p1 − p2

1 + p3
1 −4p1 p2 +2p2 +6p3 +3

)
.

Using now (10) we have

γ3 =
1
48

(
4c3

1 +8c1c2 +2c1 +4c2 +12c3 +3
)
.

Then obviously

|γ3| ≤
1

48
(
4|c1|3 +8|c1||c2|+2|c1|+4|c2|+12|c3|+3

)
and applying Lemma 1 we get

|γ3| ≤
1

48

(
4|c1|3 +8|c1||c2|+2|c1|+4|c2|+12

(
1−|c1|2 −

|c2|2

1+ |c1|

)
+3

)
.

Let h1(x,y) denotes the right hand side of the above inequality with x = |c1| and y = |c2|. Then

h1(x,y) =
1
48

(
4x3 +8xy+2x+4y+12

(
1− x2 − y2

1+ x

)
+3

)
.

The shape of the region of variability of (x,y) is a simple consequence of the Schwarz-Pick Lemma. It coincides
with

Ω = {(x,y) : 0 ≤ x ≤ 1, 0 ≤ y ≤ 1− x2} . (17)

The critical points of h1 are the solutions of the system{
12x2 + 12y2

(x+1)2 −24x+8y+2 = 0

− 24y
x+1 +8x+4 = 0 .

Hence, the only critical point of h1 in Ω is
(1

4 ,
5

16

)
and h1

(1
4 ,

5
16

)
= 21

64 . Now, it is enough to derive the greatest
value of h1 on the boundary of Ω. We have the following

h1(x,0) =
1
48

(
4x3 −12x2 +2x+15

)
≤ 3

16
+

5
√

5
6

36
= 0.3142 . . .

h1(0,y) =
1

48
(
4y+15−12y2)≤ 23

72

h1(x,1− x2) =
1
48

(
−16x3 −4x2 +22x+7

)
≤ 278+67

√
67

2592
= 0.3188 . . . .

Combinig all these inequalities we get

h1(x,y)≤
21
64

for all (x,y) ∈ Ω ,

which results in the desired bound.
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THEOREM 2. If f ∈ F2, then
|γ3| ≤ 0.2587 . . . .

Proof. Suppose that f ∈ F2 is given by (1). Then there exists p ∈ P of the form (8) such that

(1− z2) f ′(z) = p(z), z ∈ D . (18)

Applying in (18) the expansions of f and p given by (1) and (8), we obtain

a2 =
1
2

p1

a3 =
1
3
(1+ p2)

a4 =
1
4
(p1 + p3)

a5 =
1
5
(1+ p2 + p4) .

(19)

Using (3) and (19) we have

γ3 =
1
48

(
p3

1 +2p1 −4p1 p2 +6p3
)
.

From (10) we get

γ3 =
1
12

(
c3

1 +2c1c2 + c1 +3c3
)
.

Hence from the triangle inequality we have

|γ3| ≤
1
12

(
|c1|2 +2|c1||c2|+ |c1|+3|c3|

)
.

Now, using Lemma 1 we get

|γ3| ≤
1

12

(
|c1|3 +2|c1||c2|+ |c1|+3

(
1−|c1|2 −

|c2|2

1+ |c1|

))
.

Let us denote by h2(x,y) the right hand side of the above inequality, where x = |c1| and y = |c2|. Therefore,

h2(x,y) =
1
12

(
x3 +2xy+ x+3−3x2 − 3y2

1+ x

)
.

From {
3x2 + 3y2

(x+1)2 −6x+2y+1 = 0

x− 3y
x+1 = 0

it follows that (0.2257 . . . ,0.0922 . . .) is the only critical point of h2 in Ω. In this case h2(0.2257 . . . ,0.0922 . . .)=
0.2587 . . ..

To complete the proof we need to verify the behavior of the function h2 on the boundary of Ω. We have

h2(x,0) =
1

12
(
3+ x−3x2 + x3)≤ 1

54
(9+2

√
6) = 0.2573 . . .

h2(0,y) =
1
4
(
1− y2)≤ 1

4

h2(x,1− x2) =
1
6
(
3x−2x3)≤ 1

3
√

2
= 0.2357 . . . .
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Taking everything into account we obtain

h2(x,y)≤ 0.2587 . . . .

This ends the proof of the theorem.

THEOREM 3. If f ∈ F3, then

|γ3| ≤
71
192

.

Proof. Assume that f ∈ F3 is of the form (1). Then there exists p ∈ P of the form (8) such that

(1− z+ z2) f ′(z) = p(z), z ∈ D . (20)

Putting the series (1) and (8) into (20) by equating the coefficients we get

a2 =
1
2
(1+ p1)

a3 =
1
3
(p1 + p2)

a4 =
1
4
(p2 + p3 −1)

a5 =
1
5
(p3 + p4 − p1 −1) .

(21)

By (3) and (21) we obtain

γ3 =
1
48

(
p3

1 − p2
1 − p1 +2p2 −4p1 p2 +6p3 −5

)
.

Again, applying (10) we have

γ3 =
1
48

(
4c3

1 +8c1c2 −2c1 +4c2 +12c3 −5
)
.

The traingle inequality and Lemma 1 result in

|γ3| ≤
1
48

(
4|c1|3 +8|c1||c2|+2|c1|+4|c2|+12

(
1−|c1|2 −

|c2|2

1+ |c1|

)
+5

)
= h1 (|c1|, |c2|)+

1
24

,

where h1 is defined in the proof of Theorem 1.
Therefore, from Theorem 1, the declared result follows.

THEOREM 4. If f ∈ F4, then

|γ3| ≤
185
384

.

Proof. Let f ∈ F4 be of the form (1). Then there exists p ∈ P of the form (8) such that

(1− z)2 f ′(z) = p(z), z ∈ D . (22)
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Substituting the series (1) and (8) into (22) and equating the coefficients we get

a2 =
1
2
(p1 +2)

a3 =
1
3
(2p1 + p2 +3)

a4 =
1
4
(3p1 +2p2 + p3 +4)

a5 =
1
5
(4p1 +3p2 +2p3 + p4 +5) .

(23)

From (3) and (23) we get

γ3 =
1
48

(
p3

1 −2p2
1 +2p1 −4p1 p2 +4p2 +6p3 +8

)
and, using (10),

γ3 =
1
12

(
c3

1 +2c1c2 + c1 +2c2 +3c3 +2
)
.

From (11), the traingle inequality and Lemma 1 we get

|γ3| ≤
1

12

∣∣(c3 +2c1c2 + c3
1)+2c3 +2c2 + c1 +2

∣∣
≤ 1

12

(
1+2

(
1−|c1|2 −

|c2|2

1+ |c1|

)
+2|c2|+ |c1|+2

)
.

Denote by h4(x,y) the right hand side of the above inequality with x = |c1| and y = |c2|. Then

h4(x,y) =
1
12

(
5+ x−2x2 +2y− 2y2

1+ x

)
.

Now we consider the system {
1−4x+ 2y2

(1+x)2 = 0

2− 4y
1+x = 0 .

Therefore, the only critical point of h4 in Ω is
(3

8 ,
11
16

)
and h4

(3
8 ,

11
16

)
= 185

384 .
On the boundary of the set Ω, we have

h4(x,0) =
1
12

(
5+ x−2x2)≤ 41

96

h4(0,y) =
1

12
(
5+2y−2y2)≤ 11

24

h4(x,1− x2) =
1
12

(
5+3x−2x2 −2x3)≤ 1

324

(
104+11

√
22
)
= 0.4802 . . . .

Finally, we obtain

h4(x,y)≤
185
384

,

which ends the proof.
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3. ESTIMATES FOR THE γγγ4

Now we will prove the results concerning the bounds of γ4 for Fk. For this purpose we will use the results
obtained by Efraimidis.

THEOREM 5. If f ∈ F1, then
|γ4| ≤ 0.3245 . . . .

Proof. Let f ∈ F1 be of the form (1). Using (3) and (16) we get

γ4 =
1

5760
(
−45p4

1 +60p3
1 +240p2

1 p2 −70p2
1 −200p1 p2 −360p1 p3 +76p1

−160p2
2 +136p2 +216p3 +576p4 +251

)
.

Applying now (10) we obtain

|γ4|=
1

5760

∣∣864c1c3 +432c3 +512c2
2 +1216c2

1c2 +64c1c2 +272c2 +272c4
1

+112c3
1 −8c2

1 +152c1 +1152c4 +251
∣∣ .

Using the triangle inequality we have

|γ4| ≤
1

5760
(432S1 +80S2 +32S3 +S4) ,

where
S1 =

∣∣c4 +2c1c3 + c2
2 +3c2

1c2 + c4
1
∣∣≤ 1 by (13) with λ = 1 ,

S2 =
∣∣c4 + c2

2 − c2
1c2 − c4

1
∣∣≤ 1 by (13) with λ =−1 ,

S3 =
∣∣c3 +2c1c2 + c3

1
∣∣≤ 1 by (12) with λ = 1 ,

S4 =
∣∣400c3 +80c3

1 +640c4 −80c4
1 +272c2 −8c2

1 +152c1 +251
∣∣ .

Applying the triangle inequality once more we have

|γ4| ≤
1

5760
[
795+400|c3|+80|c1|3 +640|c4|+80|c1|4 +272|c2|+8|c1|2 +152|c1|

]
.

Now, by Lemma 1, we receive

|γ4| ≤
1

5760

(
640(1−|c1|2 −|c2|2)+400

(
1−|c1|2 −

|c2|2

1+ |c1|

)
+272|c2|+80|c1|4 +80|c1|3 +8|c1|2 +152|c1|+795

)
≤ g1 (|c1|, |c2|) ,

where
g1(x,y) =

1
5760

(
80x4 +80x3 −1032x2 +152x−640y2 +272y+1835

)
.

The critical points of g1 are the solutions of the system{
40x3 +30x2 −258x+19 = 0
272−1280y = 0 .

Taking into account the second equation we get rational solution of the form y0 =
17
80 , whereas x0 = 0.0743 . . .

is the solution of the polynomial of the third degree. So, the value of g1 at this point is g1
(
0.0743 . . . , 17

80

)
=

0.3245 . . ..
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Now, we need to find the gratest value of g1 on the boundary of Ω. We have

g1(x,0) =
80x4 +80x3 −1032x2 +152x+1835

5760
≤ 0.3195 . . .

g1(0,y) =
−640y2 +272y+1835

5760
≤ 2071

6400

g1(x,1− x2) =
−560x4 +80x3 −24x2 +152x+1467

5760
≤ 0.2630 . . . .

Finally, we obtain
g1(x,y)≤ 0.3245 . . . ,

which gives the desired result.

THEOREM 6. If f ∈ F2, then

|γ4| ≤
29
100

.

Proof. Assume that f ∈ F2 be of the form (1). Then from (3) and (19) we obtain

γ4 =
1

5760
(
−45p4

1 +240p2
1 p2 −120p2

1 −360p1 p3 −160p2
2 +256p2 +576p4 +416

)
and from (10)

|γ4|=
1

360

∣∣54c1c3 +32c2
2 +76c2

1c2 +32c2 +17c4
1 +2c2

1 +72c4 +26
∣∣ .

By the triangle inequality we obtain

|γ4| ≤
1

360
(27S1 +5S2 +S3) ,

where

S1 =
∣∣c4 +2c1c3 + c2

2 +3c2
1c2 + c4

1
∣∣≤ 1 by (13) with λ = 1 ,

S2 =
∣∣c4 + c2

2 − c2
1c2 − c4

1
∣∣≤ 1 by (13) with λ =−1 ,

S3 =
∣∣40c4 −5c4

1 +32c2 +2c2
1 +26

∣∣ .
Consequently,

|γ4| ≤
1

360
(
58+40|c4|+5|c1|4 +32|c2|+2|c1|2

)
.

By Lemma 1,

|γ4| ≤
1

360
(
58+40(1−|c1|2 −|c2|2)+5|c1|4 +32|c2|+2|c1|2

)
= g2 (|c1|, |c2|) ,

where

g2(x,y) =
1

360
(
98−38x2 −40y2 +5x4 +32y

)
.

It is easy to check that there are no critical points inside the set Ω. Now, it is enough to examine the behavior
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of g2 on the boundary of Ω. Hence,

g2(x,0) =
1

360
(98−38x2 +5x4)≤ 49

180

g2(0,y) =
1

360
(98−40y2 +32y)≤ 29

100

g2(x,1− x2) =
1
72

(18+2x2 −7x4)≤ 127
504

.

Taking into account all these inequalities we have

g2(x,y)≤
29
100

,

which ends the proof of the theorem.

THEOREM 7. If f ∈ F3, then
|γ4| ≤ 0.3287 . . . .

Proof. Let f ∈ F3 be of the form (1). Using (3) and (21) we have

γ4 =
1

5760
(
576p4 +216p3 −360p1 p3 −160p2

2 +240p2
1 p2 −200p1 p2 −120p2

−45p4
1 +60p3

1 +50p2
1 −156p1 −261

)
.

By (10),

|γ4|=
1

5760

∣∣864c1c3 +432c3 +512c2
2 +1216c2

1c2 +64c1c2 −240c2

+272c4
1 +112c3

1 −40c2
1 −312c1 +1152c4 −261

∣∣ .
Hence,

|γ4| ≤
1

5760
(432S1 +80S2 +S3)

where

S1 =
∣∣c4 +2c1c3 + c2

2 +3c2
1c2 + c4

1
∣∣≤ 1 by (13) with λ = 1 ,

S2 =
∣∣c4 + c2

2 − c2
1c2 − c4

1
∣∣≤ 1 by (13) with λ =−1 ,

S3 =
∣∣640c4 −80c4

1 +432c3 +64c1c2 −240c2 +112c3
1 −40c2

1 −312c1 +261
∣∣ .

The triangle inequality and Lemma 1 results in

|γ4| ≤
1

5760
(
773+640(1−|c1|2 −|c2|2)+80|c1|4 +432(1−|c1|2)

+64|c1||c2|+240|c2|+112|c1|3 +40|c1|2 +312|c1|
)
= g3 (|c1|, |c2|) ,

where

g3(x,y) =
1

5760
(
80x4 +112x3 −1032x2 +64xy+312x−640y2 +240y+1845

)
.

The critical points of g3 inside the set Ω coincide with the solution of the system of equations{
39−258x+42x2 +40x3 +8y = 0
15+4x−80y = 0 .
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There is only one critical point (0.1621 . . . ,0.1956 . . .) and
g3(0.1621 . . . ,0.1956 . . .) = 0.3287 . . .. On the boundary of Ω,

g3(x,0) =
1

5760
(1845+312x−1032x2 +112x3 +80x4)≤ 0.3244 . . .

g3(0,y) =
1

5760
(1845+240y−640y2)≤ 83

256

g3(x,1− x2) =
1

5760
(1445+376x+8x2 +48x3 −560x4)≤ 0.2798 . . . .

Finally, considering all the inequalities, we obtain

g3(x,y)≤ 0.3287 . . . ,

which is the desired result.

THEOREM 8. If f ∈ F4, then
|γ4| ≤ 0.5027 . . . .

Proof. Let f ∈ F4 be of the form (1). Therefore, using (3) and (23), we have

|γ4|=
1

5760
(
576p4 +432p3 −360p1 p3 −160p2

2 +240p2
1 p2 −400p1 p2 +288p2

−45p4
1 +120p3

1 −160p2
1 +144p1 +720

)
.

It is easy to conclude from (10) that

|γ4|=
1

360

∣∣54c1c3 +54c3 +32c2
2 +76c2

1c2 +8c1c2 +36c2 +17c4
1 +14c3

1 −4c2
1

+18c1 +72c4 +45| .

Using the triangle inequality, we obtain

|γ4| ≤
1

360
(27S1 +5S2 +S3)

where

S1 =
∣∣c4 +2c1c3 + c2

2 +3c2
1c2 + c4

1
∣∣≤ 1 by (13) with λ = 1 ,

S2 =
∣∣c4 + c2

2 − c2
1c2 − c4

1
∣∣≤ 1 by (13) with λ =−1 ,

S3 =
∣∣40c4 −5c4

1 +54c3 +8c1c2 +36c2 +14c3
1 −4c2

1 +18c1 +45
∣∣ .

By the triangle inequality and Lemma 1,

|γ4| ≤
1

360

(
77+40(1−|c1|2 −|c2|2)+5|c1|4 +54

(
1−|c1|2 −

|c2|2

1+ |c1|

)
+8|c1||c2|+36|c2|+14|c1|3 +4|c1|2 +18|c1|

)
≤ 1

360

(
171+18|c1|−90|c1|2 +14|c1|3 +5|c1|4 +36|c2|−40|c2|2

+8|c1|
(
1−|c1|2

)
= g4 (|c1|, |c2|) ,

where
g4(x,y) =

1
360

(
171+26x−90x2 +6x3 +5x4 +36y−40y2) .
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We can observe that
(
0.1469 . . . , 9

20

)
is the only critical point of g4 inside the set Ω. Therefore, g4

(
0.1469 . . . , 9

20

)
=

0.5027 . . ..
Moreover,

g4(x,0) =
1

360
(171+26x−90x2 +6x3 +5x4)≤ 0.4802 . . .

g4(0,y) =
1

360
(171+36y−40y2)≤ 199

400

g4(x,1− x2) =
1

360
(167+26x−46x2 +6x3 −35x4)≤ 0.4738 . . . .

This means that
g4(x,y)≤ 0.5027 . . . .

In this way we have proved the theorem.
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