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1. INTRODUCTION AND STATEMENT OF RESULTS

For n ≥ 2 and β >−1, consider the following quasilinear singular Liouville equation −∆nu = |x|nβ eu in Rn∫
Rn

|x|nβ eudx < ∞,
(1)

where ∆nu = div(|∇u|n−2∇u), denotes the n-Laplacian operator. Problem (1) has the explicit solution

uβ (x) = log

(
n( n2

n−1)
n−1(1+β )n(

1+ |x|
n

n−1 (1+β )
)n

)
, x ∈ Rn. (2)

Notice that equation (1) is invariant under dilation in the following sense: If u is a solution of (1) and if
τ > 0, then uβ (τ·)+ n(1+β ) logτ, is also a solution of (1). With this observation in mind, we define for all
τ > 0

uβ ,τ(x) = log

(
n( n2

n−1)
n−1(1+β )nτn(1+β )(

1+ |τx|
n

n−1 (1+β )
)n

)
, x ∈ Rn. (3)

This note aims to generalize the result of Takahashi [10], who studied the case β = 0. Specifically, he considered
the following quasilinear Liouville equation

−∆nu = eu in Rn,
∫
Rn

eudx < ∞,
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he prove the linear nondegeneracy of the explicit entire solution

u(x) = log
Cn

(1+ |x|
n

n−1 )n
, x ∈ Rn,

where Cn = n( n2

n−1)
n−1.

More precisely, we are concerned with the linear nondegeneracy of the explicit solution uβ ,τ defined by (3).
Thus, we define the linearized operator of (1) around u1,β := uβ ,τ=1 as follows

Lh :=−div(|∇u1,β |n−2
∇h)− (n−2)div(|∇u1,β |n−4(∇u1,β ·∇h)∇u1,β )−|x|nβ eu1,β h, (4)

here ”.” denotes the standard inner product in Rn. We are interested in the classification of all bounded solutions
of Lh = 0 in Rn. It is easy to get that

φ0(r) =
∂uβ ,τ

∂τ
|τ=1 =

n(1+β )

n−1
(n−1)− r

n
n−1 (1+β )

1+ r
n

n−1 (1+β )
, (5)

a bounded solution to the linearized equation Lh = 0, where r = |x|. This solution corresponds to the invariance
of the equation under dilation. We say that uβ ,τ(x) is non-degenerate if the kernel of the associated linearized
operator (4) is spanned only by the function φ0 defined by (5). Our main result states as follows.

THEOREM 1. Suppose that β > −1 and β ̸= 0. Let h be a solution in L∞ ∩C2(Rn) to the linearized
equation Lh = 0 which defined by (4). Then h can be written as a linear combination of φ0 defined by (5).

When n = 2, the above Theorem was known already, see [3]. All solutions for the singular Liouville
equation have been classified by Prajapat-Tarantello in [9], when n = 2. For n ≥ 3, Esposito [5] proves the
same classification result for (1), when β = 0. His method exploits a weighted Sobolev estimates at infinity for
any solution to (1). Furthermore, he studied the behavior of solutions near an isolated singularity, as well as a
quantization result for entire solutions of problem (1), see [4].

The rest of this note is devoted to proof our main result. Our proof is similar to that of [10]. See also [1,7,8].

2. PROOF OF THEOREM

This section is devoted to proof Theorem . To begin, let L be defined by (4), we rewrite the linear equation
Lh = 0 as follows

r2
∆h+n(n−2)(1+β )

(x.∇h)

1+ r
n

n−1 (1+β )
+(n−2)

n

∑
i, j=1

∂ 2h
∂xi∂x j

xix j

+
n3

n−1
(1+β )2 r

n
n−1 (1+β )

(1+ r
n

n−1 (1+β ))2
h = 0,

(6)

where r = |x|. Indeed, a straightforward computation shows that

Lh = −div(|∇u1,β |n−2
∇h)− (n−2)div(|∇u1,β |n−4(∇u1,β ·∇h)∇u1,β )−|x|nβ eu1,β h

= −|∇u1,β |n−2
∆h−∇(|∇u1,β |n−2).∇h− (n−2)|∇u1,β |n−4(∇u1,β ·∇h)∆u1,β

−(n−2)(∇u1,β ·∇h)∇(|∇u1,β |n−4).∇u1,β − (n−2)|∇u1,β |n−4
∇(

1
2
|∇u1,β |2).∇h

−(n−2)|∇u1,β |n−4(D2h)(∇u1,β ,∇u1,β )−|x|nβ eu1,β h,



3 Nondegeneracy of the entire solution for the n-Laplace Hénon equation of Liouville type 219

with (D2h)(∇u1,β ,∇u1,β ) =
n

∑
i, j=1

∂ 2h
∂xi∂x j

∂u1,β

∂xi

∂u1,β

∂x j
. Now, we calculate that

∇u1,β =
−n2

n−1
(1+β )

r
n

n−1 (1+β )−1

1+ r
n

n−1 (1+β )

x
r
,

|∇u1,β |k = (
n2

n−1
)k(1+β )k r

kn
n−1 (1+β )−k

(1+ r
n

n−1 (1+β ))k
,

∇(|∇u1,β |k) = (
n2

n−1
)k(1+β )k k(1+nβ )

n−1
r

nk
n−1 (1+β )−k−1(

1+ r
n

n−1 (1+β )
)k+1

(
1+

1−n
1+nβ

r
n

n−1 (1+β )
)x

r
,

where k ∈ Z and r = |x|. Therefore, we get

∇u1,β .∇h =
−n2

n−1
(1+β )

r
n

n−1 (1+β )−2

1+ r
n

n−1 (1+β )
(x.∇h),

∇(|∇u1,β |n−4).∇u1,β =−(
n2

n−1
)n−3(1+β )n−3 (n−4)(1+nβ )

n−1
r

n(n−3)
n−1 (1+β )−(n−2)(

1+ r
n

n−1 (1+β )
)n−2

×
(
1+

1−n
1+nβ

r
n

n−1 (1+β )
)
,

(D2h)(∇u1,β ,∇u1,β ) = (
n2

n−1
)2(1+β )2 r

2n
n−1 (1+β )−4(

1+ r
n

n−1 (1+β )
)2

n

∑
i, j=1

∂ 2h
∂xi∂x j

xix j.

Furthermore, we have

∆u1,β =
−n2

n−1
(1+β )

r
n

n−1 (1+β )−2

(1+ r
n

n−1 (1+β ))2

(1+nβ

n−1
+(n−1)+(n−2)r

n
n−1 (1+β )

)
.

From these, we obtain

|∇u1,β |n−2
∆h = (

n2

n−1
)n−2(1+β )n−2

( r
n

n−1 (1+β )−1

1+ r
n

n−1 (1+β )

)n−2
∆h,

∇(|∇u1,β |n−2).∇h = (
n2

n−1
)n−2(1+β )n−2 (n−2)(1+nβ )

n−1
r

n(n−2)
n−1 (1+β )−n(

1+ r
n

n−1 (1+β )
)n−1

×
(
1+

1−n
1+nβ

r
n

n−1 (1+β )
)
(x.∇h),

(n−2)|∇u1,β |n−4(∇u1,β ·∇h)∆u1,β = (n−2)(
n2

n−1
)n−2(1+β )n−2 r

n(n−2)
n−1 (1+β )−n(

1+ r
n

n−1 (1+β )
)n−1

×
(1+nβ

n−1
+(n−1)+(n−2)r

n
n−1 (1+β )

)
(x.∇h),

(n−2)(∇u1,β ·∇h)∇(|∇u1,β |n−4).∇u1,β = (n−2)(
n2

n−1
)n−2(1+β )n−2 (n−4)(1+nβ )

n−1

× r
n(n−2)

n−1 (1+β )−n(
1+ r

n
n−1 (1+β )

)n−1

(
1+

1−n
1+nβ

r
n

n−1 (1+β )
)
(x.∇h),

(n−2)|∇u1,β |n−4
∇(

1
2
|∇u1,β |2).∇h = (n−2)(

n2

n−1
)n−2(1+β )n−2 1+nβ

n−1

× r
n(n−2)

n−1 (1+β )−n(
1+ r

n
n−1 (1+β )

)n−1

(
1+

1−n
1+nβ

r
n

n−1 (1+β )
)
(x.∇h),
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(n−2)|∇u1,β |n−4(D2h)(∇u1,β ,∇u1,β ) = (n−2)(
n2

n−1
)n−2(1+β )n−2

× r
n(n−2)

n−1 (1+β )−n(
1+ r

n
n−1 (1+β )

)n−2

n

∑
i, j=1

∂ 2h
∂xi∂x j

xix j,

λ1|x|n−2eu1,β h = n(
n2

n−1
)n−1(1+β )n rnβ

(1− r
n

n−1 (1+β ))n
h.

Thus, with these expressions and after some manipulations, we get that Lh = 0 is equivalent to h verifies (6).

Now, we decompose a solution h to (6) by using spherical harmonics. So we write h as follows

h(x) = h(r,θ) =
∞

∑
k=1

gk(r)lk(θ), gk(r) =
∫

Sn−1
h(r,θ)lk(θ)dθ , (7)

where r = |x|, θ = x
r ∈ Sn−1 for a point x ∈ Rn and lk(θ) denote the k-th spherical harmonics verifying

−∆Sn−1 lk = λklk, on Sn−1,

with ∆Sn−1 denotes the Laplace-Beltrami operator on Sn−1 and

λk = k(k+n−2), k = 0,1,2, ...,

denotes the k-th eigenvalue. It is known that the multiplicity of λk is finite. In particular, λ0 = 0 has multiplicity
1 and λ1 = n−1 has multiplicity n.

Let us now write the equations satisfied by the radial functions gk(r) for k = 0,1,2, .... Let ∇θ denote the
spherical gradient operator on Sn−1. Since the decomposition of the gradient operator

∇ = θ
∂

∂ r
+

1
r

∇θ , θ .∇θ = 0

holds, for a function h of the form h(x) = g(r)l(θ), we have

x.∇h = x.∇(g(r)l(θ)) = rg′(r)l(θ),

n

∑
i, j=1

∂ 2h
∂xi∂x j

xix j =
n

∑
i, j=1

∂ 2(g(r)l(θ))
∂xi∂x j

xix j = r2g′′(r)l(θ).

Furthermore recall the formula

∆ =
∂ 2

∂ r2 +
n−1

r
∂

∂ r
+

1
r2 ∆Sn−1 .

Therefore we have, for h of the form h(x) = g(r)l(θ), the equation (6) becomes

r2(g′′(r)+
n−1

r
g′(r))l(θ)+g(r)∆Sn−1 l(θ)+n(n−2)(1+β )

rg′(r)l(θ)

1+ r
n

n−1 (1+β )

+(n−2)r2g′′(r)l(θ)+
n3

n−1
(1+β )2 r

n
n−1 (1+β )

(1+ r
n

n−1 (1+β ))2
g(r)l(θ) = 0.

Inserting equation (7) into equation (6), we deduce that each gk must be a solution to

Lk(g) := g′′(r)+
g′(r)

r

(
1+

n(n−2)
n−1

(1+β )
1

1+ r
n

n−1 (1+β )

)
− λk

n−1
g(r)
r2

+
n3

(n−1)2 (1+β )2 r
n

n−1 (1+β )

(1+ r
n

n−1 (1+β ))2

g(r)
r2 = 0.

(8)
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For h(x) = g(r)l(θ) is equivalent to that g satisfies(
rn−1g′(r)|u′1,β |

n−2
)′
−λkrn−3 1

n−1
|u′1,β |

n−2g(r)+
rn−1

n−1
rnβ eu1,β (r)g(r) = 0. (9)

In the following, we treat the equation Lk(g) = 0 in (8) for k = 0 and k ≥ 1 separately.

The case k = 0. By the invariance under the dilation, we know that φ0(x) defined by (5) satisfies (6). Since

φ0(r) =
n(1+β )

n−1
(n−1)− r

n
n−1 (1+β )

1+ r
n

n−1 (1+β )
. (10)

It is clear to see that

g0(r) =
(n−1)− r

n
n−1 (1+β )

1+ r
n

n−1 (1+β )
,

is a solution of L0(g) = 0, which is bounded on [0,∞).

We assert that any other bounded solution of L0(g) = 0 must be a constant multiple of g0. To prove this, let
us assume the contrary, that there exists a second linearly independent bounded solution g satisfying L0(g) = 0.
Without loss of generality, we can assume that g is of the form

g(r) = c(r)g0(r),

for some c = c(r). Substituting this into the equation (8), and recognizing that λ0 = 0, we derive the following
result

c′′(r)g0(r)+ c′(r)
(

2g′0(r)+
g0(r)

r

(
1+

n(n−2)
n−1

(1+β )
1

1+ r
n

n−1 (1+β )

))
+c
(

g′′0(r)+
g′0(r)

r

(
1+

n(n−2)
n−1

(1+β )
1

1+ r
n

n−1 (1+β )

)
+

n3

(n−1)2 (1+β )2 r
n

n−1 (1+β )

(1+ r
n

n−1 (1+β ))2

g0(r)
r2

)
= 0,

which leads to
c′′(r)
c′(r)

=−2
g′0(r)
g0(r)

− 1
r

(
1+

n(n−2)
n−1

(1+β )
1

1+ r
n

n−1 (1+β )

)
.

This can be written as

(log |c′(r)|)′ =−2(log |g0(r)|)′− (1+
n(n−2)

n−1
(1+β )(logr)′+(n−2)

(
log(1+ r

n
n−1 (1+β ))

)′
.

So, we have that

c′(r) = K
(1+ r

n
n−1 (1+β ))n−2

g0(r)2r1+ n(n−2)
n−1 (1+β )

,

for some K ̸= 0. Since g0(r)∼−1 near r = ∞, we have

c′(r)∼ K
r

n(n−2)
n−1 (1+β )

r1+ n(n−2)
n−1 (1+β )

=
K
r
, as r → ∞,

which implies c(r)∼ K logr+B as r → ∞ for some K ̸= 0 and B ∈R. However, in this case, |g(r)| ∼ |(K logr+
B)g0(r)| → ∞ as r → ∞, which contradicts the assumption that g is bounded. As a result, we can conclude or
obtain the claim.

The case k ≥ 1. In this case, we claim that all bounded solutions of Lk(g) = 0 are identically zero. To prove
this, let us assume the contrary, that there exists g ≇ 0 satisfying Lk(g) = 0. We may assume that there exists
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Rk > 0 such that g(r)> 0 on (0,Rk) and g′(Rk)≤ 0. Now, gk satisfies(
rn−1g′k(r)|u′1,β |

n−2
)′
−λkrn−3 1

n−1
|u′1,β |

n−2gk(r)+
rn−1

n−1
rnβ eu1,β (r)gk(r) = 0. (11)

Furthermore g0 is a solution of (9) for k = 0 :(
rn−1g′0(r)|u′1,β |

n−2
)′
+

rn−1

n−1
rnβ eu1,β (r)g0(r) = 0. (12)

Multiplying (11) by g0 and multiplying (12) by gk and subtracting, we find(
rn−1g′k(r)|u′1,β |

n−2
)′

g0(r)−
(

rn−1g′0(r)|u′1,β |
n−2
)′

gk(r) = λkrn−3 1
n−1

|u′1,β |
n−2gk(r)g0(r). (13)

Integrating both sides of the above from r = 0 to r = Rk and using gk(Rk) = 0, we obtain

Rk
n−1|u′1,β |

n−2g′k(Rk)g0(Rk) = λk

∫ Rk

0
rn−3 1

n−1
|u′1,β |

n−2gk(r)g0(r)dr. (14)

Since λk > 0 for k ≥ 1, gk(r) > 0 on (0,Rk), and g0(r) > 0, the right-hand side of (14) is positive. On the
other hand, the left-hand side of (14) is non positive since g′k(Rk)≤ 0. This contradiction implies the claim. By
combining all the facts and evidence presented throughout our proof, we can confidently conclude that Theorem
has been successfully proven.
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