NONDEGENERACY OF THE ENTIRE SOLUTION FOR THE n-LAPLACE HÉNON EQUATION OF LIOUVILLE TYPE

Sami BARAKET ${ }^{1}$, Rima CHETOUANE ${ }^{2}$, Foued MTIRI ${ }^{3}$
${ }^{1}$ Imam Mohammad Ibn Saud Islamic University (IMSIU), College of Science, Department of Mathematics and Statistics, Riyadh, Saudi Arabia
${ }^{2}$ Frères Mentouri Constantine 1 University, Faculty of Exact Sciences, Department of Mathematics, Algeria
${ }^{3}$ King Khalid University, Faculty of Sciences and Arts, Mathematics Department, Muhayil Asir, Saudi Arabia E-mails: SMBaraket@imamu.edu.sa, rima.chetouane@umc.edu.dz, mtirifoued@yahoo.com
Corresponding author: Sami BARAKET, E-mail: SMBaraket@imamu.edu.sa

Abstract

Motivated by the work of Takahashi [10], we establish nondegeneracy of the explicit family of solutions of the n-Laplace Hénon equation of Liouville type on the whole space.

Key words: singular Liouville equation, n-Laplacian operator, linearization, nondegeneracy.
Mathematics Subject Classification (MSC2020): 35J62, 35J20, 35B08.

1. INTRODUCTION AND STATEMENT OF RESULTS

For $n \geq 2$ and $\beta>-1$, consider the following quasilinear singular Liouville equation

$$
\left\{\begin{array}{l}
-\Delta_{n} u=|x|^{n \beta} e^{u} \quad \text { in } \quad \mathbb{R}^{n} \tag{1}\\
\int_{\mathbb{R}^{n}}|x|^{n \beta} e^{u} \mathrm{~d} x<\infty,
\end{array}\right.
$$

where $\Delta_{n} u=\operatorname{div}\left(|\nabla u|^{n-2} \nabla u\right)$, denotes the n-Laplacian operator. Problem (1) has the explicit solution

$$
\begin{equation*}
u_{\beta}(x)=\log \left(\frac{n\left(\frac{n^{2}}{n-1}\right)^{n-1}(1+\beta)^{n}}{\left(1+|x|^{\frac{n}{n-1}(1+\beta)}\right)^{n}}\right), \quad x \in \mathbb{R}^{n} \tag{2}
\end{equation*}
$$

Notice that equation (1) is invariant under dilation in the following sense: If u is a solution of (1) and if $\tau>0$, then $u_{\beta}(\tau \cdot)+n(1+\beta) \log \tau$, is also a solution of (1). With this observation in mind, we define for all $\tau>0$

$$
\begin{equation*}
u_{\beta, \tau}(x)=\log \left(\frac{n\left(\frac{n^{2}}{n-1}\right)^{n-1}(1+\beta)^{n} \tau^{n(1+\beta)}}{\left(1+|\tau x|^{\frac{n}{n-1}(1+\beta)}\right)^{n}}\right), \quad x \in \mathbb{R}^{n} . \tag{3}
\end{equation*}
$$

This note aims to generalize the result of Takahashi [10], who studied the case $\beta=0$. Specifically, he considered the following quasilinear Liouville equation

$$
-\Delta_{n} u=e^{u} \quad \text { in } \quad \mathbb{R}^{n}, \quad \int_{\mathbb{R}^{n}} e^{u} \mathrm{~d} x<\infty
$$

he prove the linear nondegeneracy of the explicit entire solution

$$
u(x)=\log \frac{C_{n}}{\left(1+|x|^{n}{ }^{n}\right)^{n}}, \quad x \in \mathbb{R}^{n},
$$

where $C_{n}=n\left(\frac{n^{2}}{n-1}\right)^{n-1}$.
More precisely, we are concerned with the linear nondegeneracy of the explicit solution $u_{\beta, \tau}$ defined by (3). Thus, we define the linearized operator of (1) around $u_{1, \beta}:=u_{\beta, \tau=1}$ as follows

$$
\begin{equation*}
L h:=-\operatorname{div}\left(\left|\nabla u_{1, \beta}\right|^{n-2} \nabla h\right)-(n-2) \operatorname{div}\left(\left|\nabla u_{1, \beta}\right|^{n-4}\left(\nabla u_{1, \beta} \cdot \nabla h\right) \nabla u_{1, \beta}\right)-|x|^{n \beta} e^{u_{1, \beta}} h, \tag{4}
\end{equation*}
$$

here "." denotes the standard inner product in \mathbb{R}^{n}. We are interested in the classification of all bounded solutions of $L h=0$ in \mathbb{R}^{n}. It is easy to get that

$$
\begin{equation*}
\phi_{0}(r)=\left.\frac{\partial u_{\beta, \tau}}{\partial \tau}\right|_{\tau=1}=\frac{n(1+\beta)}{n-1} \frac{(n-1)-r^{\frac{n}{n-1}(1+\beta)}}{1+r^{\frac{n}{n-1}(1+\beta)}} \tag{5}
\end{equation*}
$$

a bounded solution to the linearized equation $L h=0$, where $r=|x|$. This solution corresponds to the invariance of the equation under dilation. We say that $u_{\beta, \tau}(x)$ is non-degenerate if the kernel of the associated linearized operator (4) is spanned only by the function ϕ_{0} defined by (5). Our main result states as follows.

THEOREM 1. Suppose that $\beta>-1$ and $\beta \neq 0$. Let h be a solution in $L^{\infty} \cap C^{2}\left(\mathbb{R}^{n}\right)$ to the linearized equation $L h=0$ which defined by (4). Then h can be written as a linear combination of ϕ_{0} defined by (5).

When $n=2$, the above Theorem was known already, see [3]. All solutions for the singular Liouville equation have been classified by Prajapat-Tarantello in [9], when $n=2$. For $n \geq 3$, Esposito [5] proves the same classification result for ($\mathbb{1}$, when $\beta=0$. His method exploits a weighted Sobolev estimates at infinity for any solution to (17). Furthermore, he studied the behavior of solutions near an isolated singularity, as well as a quantization result for entire solutions of problem (1], see [4].

The rest of this note is devoted to proof our main result. Our proof is similar to that of [10]. See also [1]7, 8].

2. PROOF OF THEOREM

This section is devoted to proof Theorem. To begin, let L be defined by (4), we rewrite the linear equation $L h=0$ as follows

$$
\begin{align*}
& r^{2} \Delta h+n(n-2)(1+\beta) \frac{(x . \nabla h)}{1+r^{\frac{n}{n-1}(1+\beta)}}+(n-2) \sum_{i, j=1}^{n} \frac{\partial^{2} h}{\partial x_{i} \partial x_{j}} x_{i} x_{j} \\
& +\frac{n^{3}}{n-1}(1+\beta)^{2} \frac{r^{n-1}(1+\beta)}{\left(1+r^{\frac{n}{n-1}}(1+\beta)\right)^{2}} h=0, \tag{6}
\end{align*}
$$

where $r=|x|$. Indeed, a straightforward computation shows that

$$
\begin{aligned}
L h= & -\operatorname{div}\left(\left|\nabla u_{1, \beta}\right|^{n-2} \nabla h\right)-(n-2) \operatorname{div}\left(\left|\nabla u_{1, \beta}\right|^{n-4}\left(\nabla u_{1, \beta} \cdot \nabla h\right) \nabla u_{1, \beta}\right)-|x|^{n \beta} e^{u_{1, \beta}} h \\
= & -\left|\nabla u_{1, \beta}\right|^{n-2} \Delta h-\nabla\left(\left|\nabla u_{1, \beta}\right|^{n-2}\right) \cdot \nabla h-(n-2)\left|\nabla u_{1, \beta}\right|^{n-4}\left(\nabla u_{1, \beta} \cdot \nabla h\right) \Delta u_{1, \beta} \\
& -(n-2)\left(\nabla u_{1, \beta} \cdot \nabla h\right) \nabla\left(\left|\nabla u_{1, \beta}\right|^{n-4}\right) \cdot \nabla u_{1, \beta}-(n-2)\left|\nabla u_{1, \beta}\right|^{n-4} \nabla\left(\frac{1}{2}\left|\nabla u_{1, \beta}\right|^{2}\right) \cdot \nabla h \\
& -(n-2)\left|\nabla u_{1, \beta}\right|^{n-4}\left(D^{2} h\right)\left(\nabla u_{1, \beta}, \nabla u_{1, \beta}\right)-|x|^{n \beta} e^{u_{1, \beta}} h,
\end{aligned}
$$

with $\left(D^{2} h\right)\left(\nabla u_{1, \beta}, \nabla u_{1, \beta}\right)=\sum_{i, j=1}^{n} \frac{\partial^{2} h}{\partial x_{i} \partial x_{j}} \frac{\partial u_{1, \beta}}{\partial x_{i}} \frac{\partial u_{1, \beta}}{\partial x_{j}}$. Now, we calculate that

$$
\begin{aligned}
& \nabla u_{1, \beta}=\frac{-n^{2}}{n-1}(1+\beta) \frac{r^{\frac{n}{n-1}(1+\beta)-1} x}{1+r^{\frac{n}{n-1}(1+\beta)} \frac{x}{r}}, \\
& \left|\nabla u_{1, \beta}\right|^{k}=\left(\frac{n^{2}}{n-1}\right)^{k}(1+\beta)^{k} \frac{r^{\frac{n}{n-1}(1+\beta)-k}}{\left(1+r^{\frac{n}{n-1}(1+\beta)}\right)^{k}}, \\
& \nabla\left(\left|\nabla u_{1, \beta}\right|^{k}\right)=\left(\frac{n^{2}}{n-1}\right)^{k}(1+\beta)^{k} \frac{k(1+n \beta)}{n-1} \frac{r^{\frac{n k}{n-1}(1+\beta)-k-1}}{\left(1+r^{n-1}(1+\beta)\right)^{k+1}}\left(1+\frac{1-n}{1+n \beta} r^{\frac{n}{n-1}(1+\beta)}\right) \frac{x}{r},
\end{aligned}
$$

where $k \in \mathbb{Z}$ and $r=|x|$. Therefore, we get

$$
\begin{aligned}
& \nabla u_{1, \beta} \cdot \nabla h=\frac{-n^{2}}{n-1}(1+\beta) \frac{r^{\frac{n}{n-1}(1+\beta)-2}}{1+r^{\frac{n}{n-1}(1+\beta)}}(x . \nabla h), \\
& \begin{aligned}
& \nabla\left(\left|\nabla u_{1, \beta}\right|^{n-4}\right) \cdot \nabla u_{1, \beta}=-\left(\frac{n^{2}}{n-1}\right)^{n-3}(1+\beta)^{n-3} \frac{(n-4)(1+n \beta)}{n-1} \frac{r^{\frac{n(n-3)}{n-1}(1+\beta)-(n-2)}}{\left(1+r^{\frac{n}{n-1}(1+\beta)}\right)^{n-2}} \\
& \quad \times\left(1+\frac{1-n}{1+n \beta} r^{\frac{n}{n-1}(1+\beta)}\right), \\
&\left(D^{2} h\right)\left(\nabla u_{1, \beta}, \nabla u_{1, \beta}\right)=\left(\frac{n^{2}}{n-1}\right)^{2}(1+\beta)^{2} \frac{r^{\frac{2 n}{n-1}(1+\beta)-4}}{\left(1+r^{\frac{n}{n-1}(1+\beta)}\right)^{2}} \sum_{i, j=1}^{n} \frac{\partial^{2} h}{\partial x_{i} \partial x_{j}} x_{i} x_{j} .
\end{aligned}
\end{aligned}
$$

Furthermore, we have

$$
\Delta u_{1, \beta}=\frac{-n^{2}}{n-1}(1+\beta) \frac{r^{\frac{n}{n-1}}(1+\beta)-2}{\left(1+r^{\frac{n}{n-1}(1+\beta)}\right)^{2}}\left(\frac{1+n \beta}{n-1}+(n-1)+(n-2) r^{\frac{n}{n-1}(1+\beta)}\right) .
$$

From these, we obtain

$$
\begin{aligned}
& \left|\nabla u_{1, \beta}\right|^{n-2} \Delta h=\left(\frac{n^{2}}{n-1}\right)^{n-2}(1+\beta)^{n-2}\left(\frac{r^{\frac{n}{n-1}(1+\beta)-1}}{1+r^{\frac{n}{n-1}(1+\beta)}}\right)^{n-2} \Delta h, \\
& \nabla\left(\left|\nabla u_{1, \beta}\right|^{n-2}\right) \cdot \nabla h=\left(\frac{n^{2}}{n-1}\right)^{n-2}(1+\beta)^{n-2} \frac{(n-2)(1+n \beta)}{n-1} \frac{r^{\frac{n(n-2)}{n-1}(1+\beta)-n}}{\left(1+r^{\frac{n}{n-1}(1+\beta)}\right)^{n-1}} \\
& \times\left(1+\frac{1-n}{1+n \beta} r^{\frac{n}{n-1}(1+\beta)}\right)(x . \nabla h), \\
& (n-2)\left|\nabla u_{1, \beta}\right|^{n-4}\left(\nabla u_{1, \beta} \cdot \nabla h\right) \Delta u_{1, \beta}=(n-2)\left(\frac{n^{2}}{n-1}\right)^{n-2}(1+\beta)^{n-2} \frac{r^{\frac{n(n-2)}{n-1}(1+\beta)-n}}{\left(1+r^{\frac{n}{n-1}(1+\beta)}\right)^{n-1}} \\
& \times\left(\frac{1+n \beta}{n-1}+(n-1)+(n-2) r^{n-1}(1+\beta)\right)(x . \nabla h), \\
& (n-2)\left(\nabla u_{1, \beta} \cdot \nabla h\right) \nabla\left(\left|\nabla u_{1, \beta}\right|^{n-4}\right) \cdot \nabla u_{1, \beta}=(n-2)\left(\frac{n^{2}}{n-1}\right)^{n-2}(1+\beta)^{n-2} \frac{(n-4)(1+n \beta)}{n-1} \\
& \times \frac{r^{\frac{n(n-2)}{n-1}(1+\beta)-n}}{\left(1+r^{\frac{n}{n-1}(1+\beta)}\right)^{n-1}}\left(1+\frac{1-n}{1+n \beta} r^{\frac{n}{n-1}(1+\beta)}\right)(x . \nabla h), \\
& (n-2)\left|\nabla u_{1, \beta}\right|^{n-4} \nabla\left(\frac{1}{2}\left|\nabla u_{1, \beta}\right|^{2}\right) \cdot \nabla h=(n-2)\left(\frac{n^{2}}{n-1}\right)^{n-2}(1+\beta)^{n-2} \frac{1+n \beta}{n-1} \\
& \times \frac{r^{\frac{n(n-2)}{n-1}(1+\beta)-n}}{\left(1+r^{\frac{n}{n-1}(1+\beta)}\right)^{n-1}}\left(1+\frac{1-n}{1+n \beta} r^{\frac{n}{n-1}(1+\beta)}\right)(x . \nabla h),
\end{aligned}
$$

$$
\begin{gathered}
(n-2)\left|\nabla u_{1, \beta}\right|^{n-4}\left(D^{2} h\right)\left(\nabla u_{1, \beta}, \nabla u_{1, \beta}\right)=(n-2)\left(\frac{n^{2}}{n-1}\right)^{n-2}(1+\beta)^{n-2} \\
\times \frac{r^{\left.\frac{n}{n-2}\right)}(1+\beta)-n}{\left(1+r^{\frac{n}{n-1}(1+\beta)}\right)^{n-2}} \sum_{i, j=1}^{n} \frac{\partial^{2} h}{\partial x_{i} \partial x_{j}} x_{i} x_{j}, \\
\lambda_{1}|x|^{n-2} e^{u_{1, \beta}} h=n\left(\frac{n^{2}}{n-1}\right)^{n-1}(1+\beta)^{n} \frac{r^{n \beta}}{\left(1-r^{\frac{n}{n-1}(1+\beta)}\right)^{n}} h .
\end{gathered}
$$

Thus, with these expressions and after some manipulations, we get that $L h=0$ is equivalent to h verifies (6).
Now, we decompose a solution h to (6) by using spherical harmonics. So we write h as follows

$$
\begin{equation*}
h(x)=h(r, \theta)=\sum_{k=1}^{\infty} g_{k}(r) l_{k}(\theta), \quad g_{k}(r)=\int_{S^{n-1}} h(r, \theta) l_{k}(\theta) \mathrm{d} \theta, \tag{7}
\end{equation*}
$$

where $r=|x|, \theta=\frac{x}{r} \in S^{n-1}$ for a point $x \in \mathbb{R}^{n}$ and $l_{k}(\theta)$ denote the k-th spherical harmonics verifying

$$
-\Delta_{S^{n-1}} l_{k}=\lambda_{k} l_{k}, \quad \text { on } S^{n-1},
$$

with $\Delta_{S^{n-1}}$ denotes the Laplace-Beltrami operator on S^{n-1} and

$$
\lambda_{k}=k(k+n-2), \quad k=0,1,2, \ldots
$$

denotes the k-th eigenvalue. It is known that the multiplicity of λ_{k} is finite. In particular, $\lambda_{0}=0$ has multiplicity 1 and $\lambda_{1}=n-1$ has multiplicity n.

Let us now write the equations satisfied by the radial functions $g_{k}(r)$ for $k=0,1,2, \ldots$. Let ∇_{θ} denote the spherical gradient operator on S^{n-1}. Since the decomposition of the gradient operator

$$
\nabla=\theta \frac{\partial}{\partial r}+\frac{1}{r} \nabla_{\theta}, \quad \theta \cdot \nabla_{\theta}=0
$$

holds, for a function h of the form $h(x)=g(r) l(\theta)$, we have

$$
\begin{aligned}
x . \nabla h & =x . \nabla(g(r) l(\theta))=r g^{\prime}(r) l(\theta), \\
\sum_{i, j=1}^{n} \frac{\partial^{2} h}{\partial x_{i} \partial x_{j}} x_{i} x_{j} & =\sum_{i, j=1}^{n} \frac{\partial^{2}(g(r) l(\theta))}{\partial x_{i} \partial x_{j}} x_{i} x_{j}=r^{2} g^{\prime \prime}(r) l(\theta) .
\end{aligned}
$$

Furthermore recall the formula

$$
\Delta=\frac{\partial^{2}}{\partial r^{2}}+\frac{n-1}{r} \frac{\partial}{\partial r}+\frac{1}{r^{2}} \Delta_{S^{n-1}} .
$$

Therefore we have, for h of the form $h(x)=g(r) l(\theta)$, the equation (6) becomes

$$
\begin{aligned}
& r^{2}\left(g^{\prime \prime}(r)+\frac{n-1}{r} g^{\prime}(r)\right) l(\theta)+g(r) \Delta_{S^{n-1}} l(\theta)+n(n-2)(1+\beta) \frac{r g^{\prime}(r) l(\theta)}{1+r^{\frac{n}{n-1}(1+\beta)}} \\
& \left.+(n-2) r^{2} g^{\prime \prime}(r) l(\theta)+\frac{n^{3}}{n-1}(1+\beta)^{2} \frac{r^{\frac{n}{n-1}}(1+\beta)}{\left(1+r^{\frac{n}{n-1}}(1+\beta)\right.}\right)^{2}
\end{aligned} g(r) l(\theta)=0 . ~ . ~=
$$

Inserting equation (7) into equation (6), we deduce that each g_{k} must be a solution to

$$
\begin{align*}
L_{k}(g):= & g^{\prime \prime}(r)+\frac{g^{\prime}(r)}{r}\left(1+\frac{n(n-2)}{n-1}(1+\beta) \frac{1}{1+r^{\frac{n}{n-1}(1+\beta)}}\right)-\frac{\lambda_{k}}{n-1} \frac{g(r)}{r^{2}} \\
& +\frac{n^{3}}{(n-1)^{2}}(1+\beta)^{2} \frac{r^{\frac{n}{n-1}(1+\beta)}}{\left(1+r^{\frac{n}{n-1}(1+\beta)}\right)^{2}} \frac{g(r)}{r^{2}}=0 . \tag{8}
\end{align*}
$$

For $h(x)=g(r) l(\theta)$ is equivalent to that g satisfies

$$
\begin{equation*}
\left(r^{n-1} g^{\prime}(r)\left|u_{1, \beta}^{\prime}\right|^{n-2}\right)^{\prime}-\lambda_{k} r^{n-3} \frac{1}{n-1}\left|u_{1, \beta}^{\prime}\right|^{n-2} g(r)+\frac{r^{n-1}}{n-1} r^{n \beta} e^{u_{1, \beta}(r)} g(r)=0 \tag{9}
\end{equation*}
$$

In the following, we treat the equation $L_{k}(g)=0$ in (8) for $k=0$ and $k \geq 1$ separately.
The case $k=0$. By the invariance under the dilation, we know that $\phi_{0}(x)$ defined by (5) satisfies (6). Since

$$
\begin{equation*}
\phi_{0}(r)=\frac{n(1+\beta)}{n-1} \frac{(n-1)-r^{\frac{n}{n-1}(1+\beta)}}{1+r^{\frac{n}{n-1}(1+\beta)}} \tag{10}
\end{equation*}
$$

It is clear to see that

$$
g_{0}(r)=\frac{(n-1)-r^{\frac{n}{n-1}(1+\beta)}}{1+r^{\frac{n}{n-1}}(1+\beta)}
$$

is a solution of $L_{0}(g)=0$, which is bounded on $[0, \infty)$.
We assert that any other bounded solution of $L_{0}(g)=0$ must be a constant multiple of g_{0}. To prove this, let us assume the contrary, that there exists a second linearly independent bounded solution g satisfying $L_{0}(g)=0$. Without loss of generality, we can assume that g is of the form

$$
g(r)=c(r) g_{0}(r)
$$

for some $c=c(r)$. Substituting this into the equation (8), and recognizing that $\lambda_{0}=0$, we derive the following result

$$
\begin{aligned}
& c^{\prime \prime}(r) g_{0}(r)+c^{\prime}(r)\left(2 g_{0}^{\prime}(r)+\frac{g_{0}(r)}{r}\left(1+\frac{n(n-2)}{n-1}(1+\beta) \frac{1}{1+r^{\frac{n}{n-1}}(1+\beta)}\right)\right) \\
& +c\left(g_{0}^{\prime \prime}(r)+\frac{g_{0}^{\prime}(r)}{r}\left(1+\frac{n(n-2)}{n-1}(1+\beta) \frac{1}{1+r^{\frac{n}{n-1}(1+\beta)}}\right)\right. \\
& \left.+\frac{n^{3}}{(n-1)^{2}}(1+\beta)^{2} \frac{r^{\frac{n}{n-1}(1+\beta)}}{\left(1+r^{\frac{n}{n-1}(1+\beta)}\right)^{2}} \frac{g_{0}(r)}{r^{2}}\right)=0,
\end{aligned}
$$

which leads to

$$
\frac{c^{\prime \prime}(r)}{c^{\prime}(r)}=-2 \frac{g_{0}^{\prime}(r)}{g_{0}(r)}-\frac{1}{r}\left(1+\frac{n(n-2)}{n-1}(1+\beta) \frac{1}{1+r^{\frac{n}{n-1}(1+\beta)}}\right)
$$

This can be written as

$$
\left(\log \left|c^{\prime}(r)\right|\right)^{\prime}=-2\left(\log \left|g_{0}(r)\right|\right)^{\prime}-\left(1+\frac{n(n-2)}{n-1}(1+\beta)(\log r)^{\prime}+(n-2)\left(\log \left(1+r^{\frac{n}{n-1}(1+\beta)}\right)\right)^{\prime}\right.
$$

So, we have that

$$
c^{\prime}(r)=K \frac{\left(1+r^{\frac{n}{n-1}(1+\beta)}\right)^{n-2}}{g_{0}(r)^{2} r^{1+\frac{n(n-2)}{n-1}(1+\beta)}}
$$

for some $K \neq 0$. Since $g_{0}(r) \sim-1$ near $r=\infty$, we have

$$
c^{\prime}(r) \sim K \frac{r^{\frac{n(n-2)}{n-1}(1+\beta)}}{r^{1+\frac{n(n-2)}{n-1}(1+\beta)}}=\frac{K}{r}, \quad \text { as } r \rightarrow \infty
$$

which implies $c(r) \sim K \log r+B$ as $r \rightarrow \infty$ for some $K \neq 0$ and $B \in \mathbb{R}$. However, in this case, $|g(r)| \sim \mid(K \log r+$ B) $g_{0}(r) \mid \rightarrow \infty$ as $r \rightarrow \infty$, which contradicts the assumption that g is bounded. As a result, we can conclude or obtain the claim.

The case $k \geq 1$. In this case, we claim that all bounded solutions of $L_{k}(g)=0$ are identically zero. To prove this, let us assume the contrary, that there exists $g \not \equiv 0$ satisfying $L_{k}(g)=0$. We may assume that there exists
$R_{k}>0$ such that $g(r)>0$ on $\left(0, R_{k}\right)$ and $g^{\prime}\left(R_{k}\right) \leq 0$. Now, g_{k} satisfies

$$
\begin{equation*}
\left(r^{n-1} g_{k}^{\prime}(r)\left|u_{1, \beta}^{\prime}\right|^{n-2}\right)^{\prime}-\lambda_{k} r^{n-3} \frac{1}{n-1}\left|u_{1, \beta}^{\prime}\right|^{n-2} g_{k}(r)+\frac{r^{n-1}}{n-1} r^{n \beta} e^{u_{1, \beta}(r)} g_{k}(r)=0 \tag{11}
\end{equation*}
$$

Furthermore g_{0} is a solution of (9) for $k=0$:

$$
\begin{equation*}
\left(r^{n-1} g_{0}^{\prime}(r)\left|u_{1, \beta}^{\prime}\right|^{n-2}\right)^{\prime}+\frac{r^{n-1}}{n-1} r^{n \beta} e^{u_{1, \beta}(r)} g_{0}(r)=0 \tag{12}
\end{equation*}
$$

Multiplying (11) by g_{0} and multiplying (12) by g_{k} and subtracting, we find

$$
\begin{equation*}
\left(r^{n-1} g_{k}^{\prime}(r)\left|u_{1, \beta}^{\prime}\right|^{n-2}\right)^{\prime} g_{0}(r)-\left(r^{n-1} g_{0}^{\prime}(r)\left|u_{1, \beta}^{\prime}\right|^{n-2}\right)^{\prime} g_{k}(r)=\lambda_{k} r^{n-3} \frac{1}{n-1}\left|u_{1, \beta}^{\prime}\right|^{n-2} g_{k}(r) g_{0}(r) \tag{13}
\end{equation*}
$$

Integrating both sides of the above from $r=0$ to $r=R_{k}$ and using $g_{k}\left(R_{k}\right)=0$, we obtain

$$
\begin{equation*}
R_{k}^{n-1}\left|u_{1, \beta}^{\prime}\right|^{n-2} g_{k}^{\prime}\left(R_{k}\right) g_{0}\left(R_{k}\right)=\lambda_{k} \int_{0}^{R_{k}} r^{n-3} \frac{1}{n-1}\left|u_{1, \beta}^{\prime}\right|^{n-2} g_{k}(r) g_{0}(r) \mathrm{d} r \tag{14}
\end{equation*}
$$

Since $\lambda_{k}>0$ for $k \geq 1, g_{k}(r)>0$ on $\left(0, R_{k}\right)$, and $g_{0}(r)>0$, the right-hand side of (14) is positive. On the other hand, the left-hand side of (14) is non positive since $g_{k}^{\prime}\left(R_{k}\right) \leq 0$. This contradiction implies the claim. By combining all the facts and evidence presented throughout our proof, we can confidently conclude that Theorem has been successfully proven.

ACKNOWLEDGEMENTS

The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through the Large Groups Project under grant number (RGP2/56/44).

REFERENCES

1. S. BARAKET, F. PACARD, Construction of singular limits for a semilinear elliptic equation in dimension, Calc. Var. P.D.E., 6, pp. 1-38, 1998.
2. W.X. CHEN, C. LI, Classification of solutions of some nonlinear elliptic equations, Duke Math. J., 63, 3, pp. 615-622, 1991.
3. M. DEL PINO, P. ESPOSITO, M. MUSSO, Nondegeneracy of entire solutions of a singular Liouville equation, Proc. Am. Math. Soc., 140, pp. 581-588, 2012.
4. P. ESPOSITO, Isolated singularities for the n-Liouville equation, Calc. Var. Partial Differential Equations, 60, 4, art. $137,2021$.
5. P. ESPOSITO, A classification result for the quasi-linear Liouville equation, Ann. Inst. H. Poincaré C Anal. Non Linèaire, 35, 3, pp. 781-801, 2018.
6. J. LIOUVILLE, Sur l'équation aux différences partielles $\partial^{2} \log \frac{\lambda}{\partial u \partial v} \pm \frac{\lambda}{2 a^{2}}=0$, J. de Math., 18, pp. 17-72, 1853 .
7. K. EL MEHDI, M. GROSSI, Asymptotic estimates and qualitative properties of an elliptic problem in dimension two, Adv. Nonlinear Stud., 4, 1, pp. 15-36, 2004.
8. A. PISTOIA, G. VAIRA, Nondegeneracy of the bubble for the critical p-Laplace equation, Proc. Royal Soc. Edinburgh, 151, pp. 151-168, 2021.
9. J. PRAJAPAT, G. TARANTELLO, On a class of elliptic problems in \mathbb{R}^{2} : symmetry and uniqueness results, Proc. R. Soc. Edinb. A, 131, pp. 967-985, 2001.
10. F. TAKAHASHI, Nondegeneracy of the entire solution for the N-Laplace Liouville equation, arXiv preprint arXiv: 2210.16757v2, 2022.
