SOME CHARACTERIZATIONS OF LIPSCHITZ SPACES VIA COMMUTATORS OF THE HARDY-LITTLEWOOD MAXIMAL OPERATOR ON SLICE SPACES

Heng YANG, Jiang ZHOU

Xinjiang University, College of Mathematics and System Sciences, Urumqi, Xinjiang 830017, China Heng YANG, E-mail: yanghengxju@yeah.net Corresponding author: Jiang ZHOU, E-mail: zhoujiang@xju.edu.cn

Abstract. Let *M* be the Hardy-Littlewood maximal operator and *b* be a locally integrable function. Denote by M_b and [b,M] the maximal commutator and the nonlinear commutator of *M* with *b*. In this paper, we give necessary and sufficient conditions for the boundedness of M_b and [b,M] on slice spaces when the function *b* belongs to Lipschitz spaces, by which a new characterization of non-negative Lipschitz functions is obtained.

Key words: slice space, Lipschitz space, Hardy-Littlewood maximal operator, commutator. *Mathematics Subject Classification (MSC2020):* 42B25, 42B35,47B47, 46E30, 26A16.

1. INTRODUCTION AND MAIN RESULTS

Let T be the classical singular integral operator and b the be locally integrable function, the commutator [b, T] is defined by

$$[b,T]f(x) = bTf(x) - T(bf)(x).$$

In 1976, Coifman, Rochberg and Weiss [5] stated that the commutator [b, T] is bounded on $L^p(\mathbb{R}^n)$ for 1 $if and only if <math>b \in BMO(\mathbb{R}^n)$. The bounded mean oscillation space $BMO(\mathbb{R}^n)$ was introduced by John and Nirenberg [10], which is defined as the set of all locally integrable functions f on \mathbb{R}^n such that

$$||f||_{BMO(\mathbb{R}^n)} := \sup_{\mathcal{Q}} \frac{1}{|\mathcal{Q}|} \int_{\mathcal{Q}} |f(x) - f_{\mathcal{Q}}| \, \mathrm{d}x < \infty,$$

where the supremum is taken over all cubes in \mathbb{R}^n and $f_Q := \frac{1}{|Q|} \int_Q f(x) dx$. In 1978, Janson [8] gave some characterizations of the Lipschitz space $\dot{\Lambda}_{\beta}(\mathbb{R}^n)$ (see Definition 1) via the commutator [b,T] and proved that [b,T] is bounded from $L^p(\mathbb{R}^n)$ to $L^q(\mathbb{R}^n)$ if and only if $b \in \dot{\Lambda}_{\beta}(\mathbb{R}^n)$ ($0 < \beta < 1$), where $1 and <math>1/p - 1/q = \beta/n$ (see also Paluszyński [15]).

As usual, a cube $Q \subset \mathbb{R}^n$ always means its sides parallel to the coordinate axes. Denote by |Q| the Lebesgue measure of Q and χ_Q the characteristic function of Q. For $1 \le p \le \infty$, we denote by p' the conjugate index of p, namely, p' = p/(p-1). We always denote by C a positive constant which is independent of the main parameters, but it may vary from line to line. The symbol $f \le g$ means that $f \le Cg$. If $f \le g$ and $g \le f$, we then write $f \sim g$.

For a locally integrable function f, the Hardy-Littlewood maximal operator M is given by

$$M(f)(x) = \sup_{Q \ni x} \frac{1}{|Q|} \int_{Q} |f(y)| \mathrm{d}y,$$

where the supremum is taken over all cubes $Q \subset \mathbb{R}^n$ containing *x*.

The maximal commutator of M with a locally integrable function b is defined by

$$M_b(f)(x) = \sup_{Q \ni x} \frac{1}{|Q|} \int_Q |b(x) - b(y)||f(y)| \, \mathrm{d}y,$$

where the supremum is taken over all cubes $Q \subset \mathbb{R}^n$ containing *x*.

The mapping properties of the maximal commutator M_b have been studied intensively by many authors, we refer the readers to see [1,7,16–18,21] and therein references. The following two results can be found in [7] and [21].

THEOREM 1 ([7]). Let $1 and b be a locally integrable function. Then the maximal commutator <math>M_b$ is bounded on $L^p(\mathbb{R}^n)$ if and only if $b \in BMO(\mathbb{R}^n)$.

THEOREM 2 ([21]). Let $0 < \beta < 1$ and b be a locally integrable function. If $1 and <math>1/q = 1/p - \beta/n$, then the commutator M_b is bounded from $L^p(\mathbb{R}^n)$ to $L^q(\mathbb{R}^n)$ if and only if $b \in \dot{\Lambda}_{\beta}(\mathbb{R}^n)$.

The first part of this paper is to study the boundedness of M_b when the function b belongs to Lipschitz spaces, a characterization of Lipschitz spaces via such commutator is given.

Definition 1. Let $0 < \beta < 1$, we say a function *b* belongs to the Lipschitz space $\dot{\Lambda}_{\beta}(\mathbb{R}^n)$ if there exists a constant *C* such that for all $x, y \in \mathbb{R}^n$,

$$|b(x) - b(y)| \le C|x - y|^{\beta}$$

The smallest such constant *C* is called the $\dot{\Lambda}_{\beta}$ norm of *b* and is denoted by $||b||_{\dot{\Lambda}_{\beta}}$.

In 2019, Auscher and Mourgoglou [2] introduced the slice space $(E_2^p)_t(\mathbb{R}^n)$ with $0 < t < \infty$ and 1 , they studied the weak solutions of boundary value problems with a*t* $-independent elliptic systems in the upper half plane. Recently, Auscher and Prisuelos-Arribas [3] studied the boundedness of some classical operators on the slice space <math>(E_r^p)_t(\mathbb{R}^n)$ with $0 < t < \infty$ and $1 < p, r < \infty$, where these operators include the Hardy-Littlewood maximal operator, the Calderón-Zygmund operator with the standard kernel, the Riesz potential and the Riesz transform associated with the second order divergence form elliptic operator.

For $0 , the Lebesgue space <math>L^p(\mathbb{R}^n)$ is defined as the set of all measurable functions f on \mathbb{R}^n such that

$$\|f\|_{L^p(\mathbb{R}^n)} := \left[\int_{\mathbb{R}^n} |f(x)|^p \, \mathrm{d}x\right]^{\frac{1}{p}} < \infty.$$

Definition 2. Let $0 < t < \infty$ and $1 < r, p < \infty$. The slice space $(E_r^p)_t(\mathbb{R}^n)$ is defined as the set of all locally *r*-integrable functions *f* on \mathbb{R}^n such that

$$||f||_{(E_r^p)_t(\mathbb{R}^n)} = \left(\int_{\mathbb{R}^n} \left(\frac{1}{|Q(x,t)|} \int_{Q(x,t)} |f(y)|^r \mathrm{d}y\right)^{\frac{p}{r}} \mathrm{d}x\right)^{\frac{1}{p}} < \infty.$$

If we take r = p, then the slice space $(E_r^p)_t(\mathbb{R}^n)$ is the Lebesgue space $L^p(\mathbb{R}^n)$. For a cube Q, we denote by $||f||_{(E_r^p)_t(Q)} = ||f\chi_Q||_{(E_r^p)_t(\mathbb{R}^n)}$.

Our first result can be stated as follows.

THEOREM 3. Let $0 < \beta < 1$, $0 < t < \infty$ and b be a locally integrable function. If $1 , <math>1 < q < s < \infty$ and $\beta/n = 1/p - 1/r = 1/q - 1/s$, then the following statements are equivalent:

- (1) $b \in \dot{\Lambda}_{\beta}(\mathbb{R}^n).$
 - (2) M_b is bounded from $(E_p^q)_t(\mathbb{R}^n)$ to $(E_r^s)_t(\mathbb{R}^n)$.

(3) There exists a constant C > 0 such that

$$\sup_{Q} \frac{1}{|Q|^{\beta/n+1/s}} \|b(\cdot) - b_{Q}\|_{(E_{r}^{s})_{t}(Q)} \le C.$$
(1.1)

(4) There exists a constant C > 0 such that

$$\sup_{Q} \frac{1}{|Q|^{1+\beta/n}} \int_{Q} |b(x) - b_{Q}| \, \mathrm{d}x \le C.$$
(1.2)

For a locally integrable function f, the nonlinear commutator of the Hardy-Littlewood maximal operator M with a function b is defined by

$$[b,M]f(x) = bMf(x) - M(bf)(x)$$

Using real interpolation techniques, Milman and Schonbek [14] obtained the commutator [b, M] is bounded on $L^p(\mathbb{R}^n)$, when $b \in BMO(\mathbb{R}^n)$ and $b \ge 0$. In 2000, Bastero, Milman and Ruiz [4] studied the necessary and sufficient conditions for the boundedness of [b, M] on the Lebesgue space $L^p(\mathbb{R}^n)$ for 1 . In 2014, Zhang and Wu [23] obtained similar results and extended the mentioned results to variable exponent Lebesgue spaces.

We would like to remark that the commutators M_b and [b, M] essentially differ from each other. For example, M_b is positive and sublinear, but [b, M] is neither positive nor sublinear.

The second part of this paper aims to study the mapping properties of the nonlinear commutator [b, M] when the function b belongs to Lipschitz spaces and $b \ge 0$. To state our results, we recall the definition of the maximal operator with respect to a cube. For a fixed cube Q_0 , the Hardy-Littlewood maximal function with respect to Q_0 of a function f is given by

$$M_{Q_0}(f)(x) = \sup_{Q_0 \supseteq Q \ni x} \frac{1}{|Q|} \int_Q |f(y)| dy,$$

where the supremum is taken over all the cubes Q with $Q \subseteq Q_0$ and $Q \ni x$.

The mapping properties of the nonlinear commutator [b,M] have been investigated widely, we refer the readers to see [11, 19–22] and therein references. Zhang [21] obtained that the following result, which is a characterization of non-negative Lipschitz functions on the Lebesgue space $L^p(\mathbb{R}^n)$.

THEOREM 4 ([21]). Let $0 < \beta < 1$ and b be a locally integrable function. If $1 and <math>1/q = 1/p - \beta/n$, then the following statements are equivalent:

(1) $b \in \dot{\Lambda}_{\beta}(\mathbb{R}^n)$ and $b \ge 0$;

(2) [b,M] is bounded from $L^p(\mathbb{R}^n)$ to $L^q(\mathbb{R}^n)$;

(3) there exists a constant C > 0 such that

$$\sup_{\mathcal{Q}} \frac{1}{|\mathcal{Q}|^{\beta/n}} \left(\frac{1}{|\mathcal{Q}|} \int_{\mathcal{Q}} |b(x) - M_{\mathcal{Q}}(b)(x)|^q \, \mathrm{d}x \right)^{1/q} \leq C.$$

Our second result can be stated as follows.

THEOREM 5. Let $0 < \beta < 1$, $0 < t < \infty$ and b be a locally integrable function. If $1 , <math>1 < q < s < \infty$ and $\beta/n = 1/p - 1/r = 1/q - 1/s$, then the following statements are equivalent:

(1)
$$b \in \Lambda_{\beta}(\mathbb{R}^n)$$
 and $b \ge 0$

(2) [b,M] is bounded from $(E_p^q)_t(\mathbb{R}^n)$ to $(E_r^s)_t(\mathbb{R}^n)$.

(3) There exists a constant C > 0 such that

$$\sup_{Q} \frac{1}{|Q|^{\beta/n+1/s}} \|b(\cdot) - M_{Q}(b)(\cdot)\|_{(E_{r}^{s})_{t}(Q)} \le C.$$
(1.3)

(4) There exists a constant C > 0 such that

$$\sup_{Q} \frac{1}{|Q|^{1+\beta/n}} \int_{Q} |b(x) - M_{Q}(b)(x)| \, dx \le C.$$
(1.4)

2. PRELIMINARIES

To prove our results, we need some necessary lemmas. It is known that the Lipschitz space $\Lambda_{\beta}(\mathbb{R}^n)$ coincides with some Morrey-Companato space (see [9] for example) and can be characterized by mean oscillation as the following lemma, which is due to DeVore and Sharpley [6] and Janson, Taibleson and Weiss [9] (see also Paluszyński [15]).

LEMMA 1. Let $0 < \beta < 1$ and $1 \le q < \infty$. The space $\dot{\Lambda}_{\beta,q}(\mathbb{R}^n)$ is defined as the set of all locally integrable functions f such that

$$\|f\|_{\dot{\Lambda}_{\beta,q}} = \sup_{\mathcal{Q}} \frac{1}{|\mathcal{Q}|^{\beta/n}} \left(\frac{1}{|\mathcal{Q}|} \int_{\mathcal{Q}} |f(x) - f_{\mathcal{Q}}|^q \,\mathrm{d}x\right)^{1/q} < \infty.$$

Then, for all $0 < \beta < 1$ *and* $1 \le q < \infty, \dot{\Lambda}_{\beta}(\mathbb{R}^n) = \dot{\Lambda}_{\beta,q}(\mathbb{R}^n)$ *with equivalent norms.*

Let $0 < \alpha < n$ and f be a locally integrable function, the fractional maximal function of f is given by

$$M_{\alpha}(f)(x) = \sup_{\mathcal{Q}} \frac{1}{|\mathcal{Q}|^{1-\alpha/n}} \int_{\mathcal{Q}} |f(y)| \mathrm{d}y,$$

where the supremum is taken over all cubes $Q \subset \mathbb{R}^n$ containing *x*.

The following lemma is given by Lu, Wang and Zhou [12], they obtained that the boundedness of the fractional maximal operator M_{α} on slice spaces.

LEMMA 2. Let $0 < t < \infty$, $1 and <math>1 < q < s < \infty$ with $\alpha/n = 1/p - 1/r = 1/q - 1/s$ for $0 < \alpha < n$. If $f \in (E_p^q)_t(\mathbb{R}^n)$, then

$$\|M_{\alpha}f\|_{(E_r^s)_t(\mathbb{R}^n)} \leq C \|f\|_{(E_p^q)_t(\mathbb{R}^n)}$$

where the positive constant *C* is independent of *f* and *t*.

LEMMA 3 [13]. Let $0 < t < \infty$, $1 < p, r < \infty$ and Q be a cube in \mathbb{R}^n . Then

$$\|\boldsymbol{\chi}_Q\|_{(E_r^p)_t(\mathbb{R}^n)} \sim |Q|^{1/p}$$

LEMMA 4 [4]. For any fixed cube Q, let $E = \{x \in Q : b(x) \le b_Q\}$ and $F = \{x \in Q : b(x) > b_Q\}$. Then the following equality is true:

$$\int_{E} |b(x) - b_{\mathcal{Q}}| \, \mathrm{d}x = \int_{F} |b(x) - b_{\mathcal{Q}}| \, \mathrm{d}x$$

3. PROOFS OF THEOREMS 3 AND 5

Proof of Theorem 3. (1) \Rightarrow (2): Assume $b \in \dot{\Lambda}_{\beta}(\mathbb{R}^n)$. For any fixed cube $Q \subset \mathbb{R}^n$, we have

$$\begin{split} M_b(f)(x) &= \sup_{Q \ni x} \frac{1}{|Q|} \int_Q |b(x) - b(y)| |f(y)| \, \mathrm{d}y \\ &\leq C \|b\|_{\dot{\Lambda}_\beta(\mathbb{R}^n)} \sup_{Q \ni x} \frac{1}{|Q|^{1-\beta/n}} \int_Q |f(y)| \, \mathrm{d}y \\ &= C \|b\|_{\dot{\Lambda}_\beta(\mathbb{R}^n)} M_\beta f(x). \end{split}$$

By Lemma 2, we obtain that M_b is bounded from $(E_p^q)_t(\mathbb{R}^n)$ to $(E_r^s)_t(\mathbb{R}^n)$.

 $(2) \Rightarrow (3)$: For any fixed cube $Q \subset \mathbb{R}^n$ and all $x \in Q$, we have

$$\begin{aligned} |b(x) - b_{\mathcal{Q}}| &\leq \frac{1}{|\mathcal{Q}|} \int_{\mathcal{Q}} |b(x) - b(y)| \,\mathrm{d}y \\ &= \frac{1}{|\mathcal{Q}|} \int_{\mathcal{Q}} |b(x) - b(y)| \chi_{\mathcal{Q}}(y) \,\mathrm{d}y \\ &\leq M_b(\chi_{\mathcal{Q}})(x). \end{aligned}$$

Since M_b is bounded from $(E_p^q)_t(\mathbb{R}^n)$ to $(E_r^s)_t(\mathbb{R}^n)$, then by Lemma 3 and noting that $\beta/n = 1/q - 1/s$, we obtain that

$$\begin{aligned} \frac{1}{|\mathcal{Q}|^{\beta/n+1/s}} \|b(\cdot) - b_{\mathcal{Q}}\|_{(E_r^s)_t(\mathcal{Q})} &\leq \frac{1}{|\mathcal{Q}|^{\beta/n+1/s}} \|M_b(\chi_{\mathcal{Q}})(\cdot)\|_{(E_r^s)_t(\mathcal{Q})} \\ &\leq \frac{C}{|\mathcal{Q}|^{\beta/n+1/s}} \|\chi_{\mathcal{Q}}\|_{(E_p^q)_t(\mathbb{R}^n)} \\ &\leq C, \end{aligned}$$

which implies (1.1) since the cube $Q \subset \mathbb{R}^n$ is arbitrary.

 $(3) \Rightarrow (4)$: Assume (1.1) holds, we will prove (1.2). For any fixed cube Q, by Hölder's inequality and Lemma 3, it is easy to see that

$$\begin{aligned} \frac{1}{|Q|^{1+\beta/n}} \int_{Q} |b(x) - b_{Q}| \, \mathrm{d}x &\leq \frac{C}{|Q|^{1+\beta/n}} \, \|b(\cdot) - b_{Q}\|_{(E_{r}^{s})_{t}(Q)} \, \|\chi_{Q}\|_{(E_{r'}^{s'})_{t}(\mathbb{R}^{n})} \\ &\leq \frac{C}{|Q|^{\beta/n+1/s}} \, \|b(\cdot) - b_{Q}\|_{(E_{r}^{s})_{t}(Q)} \\ &\leq C. \end{aligned}$$

(4) \Rightarrow (1): It follows from Lemma 1 directly, thus we omit the details.

The proof of Theorem 3 is completed.

Proof of Theorem 5. (1) \Rightarrow (2): Assume $b \in \dot{\Lambda}_{\beta}(\mathbb{R}^n)$ and $b \ge 0$. For any locally integral function f, we have

$$\begin{split} |[b,M](f)(x)| &= |b(x)M(f)(x) - M(bf)(x)| \\ &\leq \sup_{Q \ni x} \frac{1}{|Q|} \int_{Q} |b(x) - b(y)| |f(y)| \, \mathrm{d}y \\ &\leq C ||b||_{\dot{\Lambda}_{\beta}} \sup_{Q \ni x} \frac{1}{|Q|^{1-\beta/n}} \int_{Q} |f(y)| \, \mathrm{d}y \\ &\leq C ||b||_{\dot{\Lambda}_{\beta}} M_{\beta}(f)(x). \end{split}$$

By Lemma 2, we obtain that [b, M] is bounded from $(E_p^q)_t(\mathbb{R}^n)$ to $(E_r^s)_t(\mathbb{R}^n)$.

 $(2) \Rightarrow (3)$:For any fixed cube *Q* and any $x \in Q$, it is easy to see that

$$M_Q(\chi_Q)(x) = \chi_Q(x)$$
 for any $x \in Q$,

then we have

$$M(\chi_Q)(x) = \chi_Q(x) \text{ and } M(b\chi_Q)(x) = M_Q(b)(x) \text{ for any } x \in Q.$$
(3.1)

By (3.1), we obtain that

$$b(x) - M_{Q}(b)(x) = b(x)M(\chi_{Q})(x) - M(b\chi_{Q})(x) = [b, M](\chi_{Q})(x).$$

Since [b, M] is bounded from $(E_p^q)_t(\mathbb{R}^n)$ to $(E_r^s)_t(\mathbb{R}^n)$ and $\beta/n = 1/q - 1/s$, by Lemma 3, we have

$$\begin{aligned} \frac{1}{|\mathcal{Q}|^{\beta/n+1/s}} \|b(\cdot) - M_{\mathcal{Q}}(b)(\cdot)\|_{(E_r^s)_t(\mathcal{Q})} &= \frac{1}{|\mathcal{Q}|^{\beta/n+1/s}} \|[b, M](\chi_{\mathcal{Q}})(\cdot)\|_{(E_r^s)_t(\mathcal{Q})} \\ &\leq \frac{C}{|\mathcal{Q}|^{\beta/n+1/s}} \|\chi_{\mathcal{Q}}\|_{(E_p^g)_t(\mathbb{R}^n)} \\ &\leq C, \end{aligned}$$

which implies (1.3).

 $(3) \Rightarrow (4)$: Assume (1.3) holds, then for any fixed cube Q, by Hölder's inequality and (1.3), it is easy to see that

$$\begin{aligned} \frac{1}{|\mathcal{Q}|^{1+\beta/n}} \int_{\mathcal{Q}} |b(x) - M_{\mathcal{Q}}(b)(x)| \, \mathrm{d}x &\leq \frac{C}{|\mathcal{Q}|^{1+\beta/n}} \|b(\cdot) - M_{\mathcal{Q}}(b)(\cdot)\|_{(E_{r}^{s})_{t}(\mathcal{Q})} \|\chi_{\mathcal{Q}}\|_{(E_{r'}^{s'})_{t}(\mathbb{R}^{n})} \\ &\leq \frac{C}{|\mathcal{Q}|^{\beta/n+1/s}} \|b(\cdot) - M_{\mathcal{Q}}(b)(\cdot)\|_{(E_{r}^{s})_{t}(\mathcal{Q})} \\ &\leq C, \end{aligned}$$

where the constant C is independent of Q. Thus we have (1.4).

(4) \Rightarrow (1): To prove $b \in \dot{\Lambda}_{\beta}(\mathbb{R}^n)$, by Lemma 1, it suffices to show that there is a constant C > 0 such that for any fixed cube Q,

$$\frac{1}{|\mathcal{Q}|^{1+\beta/n}}\int_{\mathcal{Q}}|b(x)-b_{\mathcal{Q}}|\,\mathrm{d} x\leq C.$$

For any fixed cube Q, let $E = \{x \in Q : b(x) \le b_Q\}$ and $F = \{x \in Q : b(x) > b_Q\}$. Since for any $x \in E$ we have $b(x) \le b_Q \le M_Q(b)(x)$, then for any $x \in E$,

$$|b(x) - b_Q| \le |b(x) - M_Q(b)(x)|$$

By Lemma 4 and (1.4), we have

$$\begin{aligned} \frac{1}{|Q|^{1+\beta/n}} \int_{Q} |b(x) - b_{Q}| \, \mathrm{d}x &= \frac{1}{|Q|^{1+\beta/n}} \int_{E \cup F} |b(x) - b_{Q}| \, \mathrm{d}x \\ &= \frac{2}{|Q|^{1+\beta/n}} \int_{E} |b(x) - b_{Q}| \, \mathrm{d}x \\ &\leq \frac{2}{|Q|^{1+\beta/n}} \int_{E} |b(x) - M_{Q}(b)(x)| \, \mathrm{d}x \\ &\leq \frac{2}{|Q|^{1+\beta/n}} \int_{Q} |b(x) - M_{Q}(b)(x)| \, \mathrm{d}x \\ &\leq C. \end{aligned}$$

Thus we obtain that $b \in \dot{\Lambda}_{\beta}(\mathbb{R}^n)$. Next, we will prove $b \ge 0$, it suffices to show $b^- = 0$, where $b^- = -\min\{b, 0\}$. Let $b^+ = |b| - b^-$, then $b = b^+ - b^-$. For any fixed cube Q and $x \in Q$, we observe that

$$0 \le b^+(x) \le |b(x)| \le M_Q(b)(x),$$

then we have

$$0 \le b^{-}(x) \le M_{Q}(b)(x) - b^{+}(x) + b^{-}(x) = M_{Q}(b)(x) - b(x).$$

6

Combining with the above estimates and (1.4), we can see that

$$\begin{split} \frac{1}{|\mathcal{Q}|} \int_{\mathcal{Q}} b^{-}(x) \mathrm{d}x &\leq \frac{1}{|\mathcal{Q}|} \int_{\mathcal{Q}} |M_{\mathcal{Q}}(b)(x) - b(x)| \\ &\leq |\mathcal{Q}|^{\beta/n} \left(\frac{1}{|\mathcal{Q}|^{1+\beta/n}} \int_{\mathcal{Q}} |b(x) - M_{\mathcal{Q}}(b)(x)| \,\mathrm{d}x \right) \\ &\leq C |\mathcal{Q}|^{\beta/n}. \end{split}$$

Thus, $b^- = 0$ follows from Lebesgue's differentiation theorem.

The proof of Theorem 5 is completed.

ACKNOWLEDGEMENTS

The authors would like to express their gratitude to the referees for valuable comments and suggestions. This work is supported by the National Natural Science Foundation of China (No.12061069).

REFERENCES

- 1. M. AGCAYAZI, A. GOGATISHVILI, K. KOCA, R. MUSTAFAYEV, A note on maximal commutators and commutators of maximal functions, Journal of the Mathematical Society of Japan, 67, 2, pp. 581–593, 2015.
- 2. P. AUSCHER, M. MOURGOGLOU, *Representation and uniqueness for boundary value elliptic problems via first order systems*, Revista matemática iberoamericana, **35**, *1*, pp. 241–315, 2019.
- 3. P. AUSCHER, C. PRISUELOS-ARRIBAS, *Tent space boundedness via extrapolation*, Mathematische Zeitschrift, **286**, *3–4*, pp. 1575–1604, 2017.
- J. BASTERO, M. MILMAN, F. J. RUIZ, Commutators for the maximal and sharp functions, Proceedings of the American Mathematical Society, 128, 11, pp. 3329–3334, 2000.
- R.R. COIFMAN, R. ROCHBERG, G. WEISS, Factorization theorems for Hardy spaces in several variables, Annals of Mathematics, 103, 3, pp. 611–635, 1976.
- R.A. DEVORE, R.C. SHARPLEY, *Maximal functions measuring smoothness*, Memoirs of the American Mathematical Society, 47, 293, pp. 1–115, 1984.
- J. GARCÍA-CUERVA, E. HARBOURE, C. SEGOVIA, J.L. TORREA, Weighted norm inequalities for commutators of strongly singular integrals, Indiana University Mathematics Journal, 40, 4, pp. 1397–1420, 1991.
- 8. S. JANSON, Mean oscillation and commutators of singular integral operators, Arkiv för Matematik, 16, 1–2, pp. 263–270, 1978.
- S. JANSON, M. TAIBLESON, G. WEISS, *Elementary characterization of the Morrey-Campanato spaces*, Lecture Notes in Mathematics, 992, pp. 101–114, 1983.
- 10. F. JOHN, L. NIRENBERG, *On functions of bounded mean oscillation*, Communications on Pure and Applied Mathematics, **14**, *3*, pp. 415–426, 1961.
- F. LIU, Q. XUE, P. ZHANG, Regularity and continuity of commutators of the Hardy-Littlewood maximal function, Mathematische Nachrichten, 293, 3, pp. 491–509, 2020.
- 12. Y. LU, S. WANG, J. ZHOU, Some estimates of multilinear operators on weighted amalgam spaces $(L^p, L^q_w)_t(\mathbb{R}^n)$, Acta Mathematica Hungarica, **168**, *1*, pp. 113–143, 2022.
- 13. Y. LU, J. ZHOU, S. WANG, Necessary and sufficient conditions for boundedness of commutators associated with Calderón-Zygmund operators on slice spaces, Annals of Functional Analysis, **13**, 4, art. 61, 2022.
- M. MILMAN, T. SCHONBEK, Second order estimates in interpolation theory and applications, Proceedings of the American Mathematical Society, 110, 4, pp. 961–969, 1990.
- 15. M. PALUSZYŃSKI, Characterization of the Besov spaces via the commutator operator of Coifman, Rochberg and Weiss, Indiana University Mathematics Journal, 44, 1, pp. 1–17, 1995.
- 16. C. SEGOVIA, J.L. TORREA, Vector-valued commutators and applications, Indiana University Mathematics Journal, **38**, 4, pp. 959–971, 1989.
- C. SEGOVIA, J.L. TORREA, *Higher order commutators for vector-valued Calderón-Zygmund operators*, Proceedings of the American Mathematical Society, 336, 2, pp. 537–556, 1993.

- 19. Z. XIE, L. LIU, *Boundedness of Toeplitz type operator related to general fractional integral operators on Orlicz space*, Proceedings of the Romanian Academy, Series A: Mathematics, Physics, Technical Sciences, Information Science, **16**, *3*, pp. 413–421, 2015.
- 20. P. ZHANG, *Multiple weighted estimates for commutators of multilinear maximal function*, Acta Mathematica Sinica, English Series, **31**, 6, pp. 973–994, 2015.
- 21. P. ZHANG, Characterization of Lipschitz spaces via commutators of the Hardy-Littlewood maximal function, Comptes Rendus Mathématique, **355**, *3*, pp. 336–344, 2017.
- 22. P. ZHANG, Characterization of boundedness of some commutators of maximal functions in terms of Lipschitz spaces, Analysis and Mathematical Physics, 9, 3, pp. 1411–1427, 2019.
- 23. P. ZHANG, J. L. WU, *Commutators for the maximal functions on Lebesgue spaces with variable exponent*, Mathematical Inequalities and Applications, **17**, *4*, pp. 1375–1386, 2014.

Received May 13, 2023