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Abstract. Let M be the Hardy-Littlewood maximal operator and b be a locally integrable function. Denote
by Mb and [b,M] the maximal commutator and the nonlinear commutator of M with b. In this paper, we give
necessary and sufficient conditions for the boundedness of Mb and [b,M] on slice spaces when the function b
belongs to Lipschitz spaces, by which a new characterization of non-negative Lipschitz functions is obtained.
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1. INTRODUCTION AND MAIN RESULTS

Let T be the classical singular integral operator and b the be locally integrable function, the commutator
[b,T ] is defined by

[b,T ] f (x) = bT f (x)−T (b f )(x).

In 1976, Coifman, Rochberg and Weiss [5] stated that the commutator [b,T ] is bounded on Lp(Rn) for 1< p<∞

if and only if b ∈ BMO(Rn). The bounded mean oscillation space BMO(Rn) was introduced by John and
Nirenberg [10], which is defined as the set of all locally integrable functions f on Rn such that

∥ f∥BMO(Rn) := sup
Q

1
|Q|

∫
Q
| f (x)− fQ|dx < ∞,

where the supremum is taken over all cubes in Rn and fQ := 1
|Q|
∫

Q f (x)dx. In 1978, Janson [8] gave some
characterizations of the Lipschitz space Λ̇β (Rn)(see Definition 1) via the commutator [b,T ] and proved that
[b,T ] is bounded from Lp (Rn) to Lq (Rn) if and only if b ∈ Λ̇β (Rn)(0 < β < 1), where 1 < p < n/β and
1/p−1/q = β/n (see also Paluszyński [15]).

As usual, a cube Q ⊂Rn always means its sides parallel to the coordinate axes. Denote by |Q| the Lebesgue
measure of Q and χQ the characteristic function of Q. For 1 ≤ p ≤ ∞, we denote by p′ the conjugate index
of p, namely, p′ = p/(p− 1). We always denote by C a positive constant which is independent of the main
parameters, but it may vary from line to line. The symbol f ≲ g means that f ≤Cg . If f ≲ g and g ≲ f , we
then write f ∼ g.

For a locally integrable function f , the Hardy-Littlewood maximal operator M is given by

M( f )(x) = sup
Q∋x

1
|Q|

∫
Q
| f (y)|dy,

where the supremum is taken over all cubes Q ⊂ Rn containing x.
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The maximal commutator of M with a locally integrable function b is defined by

Mb( f )(x) = sup
Q∋x

1
|Q|

∫
Q
|b(x)−b(y)∥ f (y)|dy,

where the supremum is taken over all cubes Q ⊂ Rn containing x.
The mapping properties of the maximal commutator Mb have been studied intensively by many authors, we

refer the readers to see [1, 7, 16–18, 21] and therein references. The following two results can be found in [7]
and [21].

THEOREM 1 ([7]). Let 1 < p < ∞ and b be a locally integrable function. Then the maximal commutator
Mb is bounded on Lp(Rn) if and only if b ∈ BMO(Rn).

THEOREM 2 ([21]). Let 0 < β < 1 and b be a locally integrable function. If 1 < p < n/β and 1/q =
1/p−β/n, then the commutator Mb is bounded from Lp(Rn) to Lq(Rn) if and only if b ∈ Λ̇β (Rn).

The first part of this paper is to study the boundedness of Mb when the function b belongs to Lipschitz
spaces, a characterization of Lipschitz spaces via such commutator is given.

Definition 1. Let 0 < β < 1, we say a function b belongs to the Lipschitz space Λ̇β (Rn) if there exists a
constant C such that for all x,y ∈ Rn,

|b(x)−b(y)| ≤C|x− y|β .

The smallest such constant C is called the Λ̇β norm of b and is denoted by ∥b∥
Λ̇β

.

In 2019, Auscher and Mourgoglou [2] introduced the slice space (E p
2 )t(Rn) with 0 < t < ∞ and 1 < p < ∞,

they studied the weak solutions of boundary value problems with a t-independent elliptic systems in the upper
half plane. Recently, Auscher and Prisuelos-Arribas [3] studied the boundedness of some classical operators on
the slice space (E p

r )t(Rn) with 0 < t < ∞ and 1 < p,r < ∞, where these operators include the Hardy-Littlewood
maximal operator, the Calderón-Zygmund operator with the standard kernel, the Riesz potential and the Riesz
transform associated with the second order divergence form elliptic operator.

For 0 < p < ∞, the Lebesgue space Lp(Rn) is defined as the set of all measurable functions f on Rn such
that

∥ f∥Lp(Rn) :=
[∫

Rn
| f (x)|p dx

] 1
p

< ∞.

Definition 2. Let 0 < t < ∞ and 1 < r, p < ∞. The slice space (E p
r )t(Rn) is defined as the set of all locally

r-integrable functions f on Rn such that

∥ f∥(E p
r )t(Rn) =

(∫
Rn

(
1

|Q(x, t)|

∫
Q(x,t)

| f (y)|rdy
) p

r

dx

) 1
p

< ∞.

If we take r = p, then the slice space (E p
r )t(Rn) is the Lebesgue space Lp(Rn). For a cube Q, we denote by

∥ f∥(E p
r )t(Q) = ∥ f χQ∥(E p

r )t(Rn).

Our first result can be stated as follows.

THEOREM 3 . Let 0 < β < 1, 0 < t < ∞ and b be a locally integrable function. If 1 < p < r < ∞,
1 < q < s < ∞ and β/n = 1/p−1/r = 1/q−1/s, then the following statements are equivalent:

(1) b ∈ Λ̇β (Rn).
(2) Mb is bounded from (Eq

p)t(Rn) to (Es
r )t(Rn).

(3) There exists a constant C > 0 such that

sup
Q

1
|Q|β/n+1/s

∥b(·)−bQ∥(Es
r )t(Q) ≤C. (1.1)
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(4) There exists a constant C > 0 such that

sup
Q

1
|Q|1+β/n

∫
Q
|b(x)−bQ|dx ≤C. (1.2)

For a locally integrable function f , the nonlinear commutator of the Hardy-Littlewood maximal operator
M with a function b is defined by

[b,M] f (x) = bM f (x)−M(b f )(x).

Using real interpolation techniques, Milman and Schonbek [14] obtained the commutator [b,M] is bounded on
Lp(Rn), when b ∈ BMO(Rn) and b ≥ 0. In 2000, Bastero, Milman and Ruiz [4] studied the necessary and
sufficient conditions for the boundedness of [b,M] on the Lebesgue space Lp(Rn) for 1 < p < ∞. In 2014,
Zhang and Wu [23] obtained similar results and extended the mentioned results to variable exponent Lebesgue
spaces.

We would like to remark that the commutators Mb and [b,M] essentially differ from each other. For example,
Mb is positive and sublinear, but [b,M] is neither positive nor sublinear.

The second part of this paper aims to study the mapping properties of the nonlinear commutator [b,M]
when the function b belongs to Lipschitz spaces and b ≥ 0. To state our results, we recall the definition of the
maximal operator with respect to a cube. For a fixed cube Q0, the Hardy-Littlewood maximal function with
respect to Q0 of a function f is given by

MQ0( f )(x) = sup
Q0⊇Q∋x

1
|Q|

∫
Q
| f (y)|dy,

where the supremum is taken over all the cubes Q with Q ⊆ Q0 and Q ∋ x.
The mapping properties of the nonlinear commutator [b,M] have been investigated widely, we refer the

readers to see [11, 19–22] and therein references. Zhang [21] obtained that the following result, which is a
characterization of non-negative Lipschitz functions on the Lebesgue space Lp(Rn).

THEOREM 4 ([21]). Let 0 < β < 1 and b be a locally integrable function. If 1 < p < n/β and 1/q =
1/p−β/n, then the following statements are equivalent:

(1) b ∈ Λ̇β (Rn) and b ≥ 0;
(2) [b,M] is bounded from Lp(Rn) to Lq(Rn);
(3) there exists a constant C > 0 such that

sup
Q

1
|Q|β/n

(
1
|Q|

∫
Q
|b(x)−MQ(b)(x)|q dx

)1/q

≤C.

Our second result can be stated as follows.

THEOREM 5 . Let 0 < β < 1, 0 < t < ∞ and b be a locally integrable function. If 1 < p < r < ∞,
1 < q < s < ∞ and β/n = 1/p−1/r = 1/q−1/s, then the following statements are equivalent:

(1) b ∈ Λ̇β (Rn) and b ≥ 0.
(2) [b,M] is bounded from (Eq

p)t(Rn) to (Es
r )t(Rn).

(3) There exists a constant C > 0 such that

sup
Q

1
|Q|β/n+1/s ∥b(·)−MQ(b)(·)∥(Es

r )t(Q) ≤C. (1.3)

(4) There exists a constant C > 0 such that

sup
Q

1
|Q|1+β/n

∫
Q
|b(x)−MQ(b)(x)|dx ≤C. (1.4)



226 Heng YANG, Jiang ZHOU 4

2. PRELIMINARIES

To prove our results, we need some necessary lemmas. It is known that the Lipschitz space Λ̇β (Rn) coin-
cides with some Morrey-Companato space (see [9] for example) and can be characterized by mean oscillation
as the following lemma, which is due to DeVore and Sharpley [6] and Janson, Taibleson and Weiss [9] (see also
Paluszyński [15]).

LEMMA 1 . Let 0 < β < 1 and 1 ≤ q < ∞. The space Λ̇β ,q (Rn) is defined as the set of all locally integrable
functions f such that

∥ f∥
Λ̇β ,q

= sup
Q

1
|Q|β/n

(
1
|Q|

∫
Q
| f (x)− fQ|q dx

)1/q

< ∞.

Then, for all 0 < β < 1 and 1 ≤ q < ∞, Λ̇β (Rn) = Λ̇β ,q (Rn) with equivalent norms.

Let 0 < α < n and f be a locally integrable function, the fractional maximal function of f is given by

Mα( f )(x) = sup
Q

1
|Q|1−α/n

∫
Q
| f (y)|dy,

where the supremum is taken over all cubes Q ⊂ Rn containing x.

The following lemma is given by Lu, Wang and Zhou [12], they obtained that the boundedness of the
fractional maximal operator Mα on slice spaces.

LEMMA 2 . Let 0 < t < ∞, 1 < p < r < ∞ and 1 < q < s < ∞ with α/n = 1/p− 1/r = 1/q− 1/s for
0 < α < n. If f ∈ (Eq

p)t(Rn), then
∥Mα f∥(Es

r )t(Rn) ≤C∥ f∥(Eq
p)t(Rn),

where the positive constant C is independent of f and t.

LEMMA 3 [13]. Let 0 < t < ∞, 1 < p,r < ∞ and Q be a cube in Rn. Then

∥χQ∥(E p
r )t(Rn) ∼ |Q|1/p,

LEMMA 4 [4]. For any fixed cube Q, let E = {x ∈ Q : b(x)≤ bQ} and F = {x ∈ Q : b(x)> bQ}. Then the
following equality is true: ∫

E
|b(x)−bQ|dx =

∫
F
|b(x)−bQ|dx.

3. PROOFS OF THEOREMS 3 AND 5

Proof of Theorem 3. (1) ⇒ (2): Assume b ∈ Λ̇β (Rn). For any fixed cube Q ⊂ Rn, we have

Mb( f )(x) = sup
Q∋x

1
|Q|

∫
Q
|b(x)−b(y)∥ f (y)|dy

≤C∥b∥
Λ̇β (Rn) sup

Q∋x

1
|Q|1−β/n

∫
Q
| f (y)|dy

=C∥b∥
Λ̇β (Rn)Mβ f (x).

By Lemma 2, we obtain that Mb is bounded from (Eq
p)t(Rn) to (Es

r )t(Rn).
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(2)⇒ (3): For any fixed cube Q ⊂ Rn and all x ∈ Q, we have

|b(x)−bQ| ≤
1
|Q|

∫
Q
|b(x)−b(y)|dy

=
1
|Q|

∫
Q
|b(x)−b(y)|χQ(y)dy

≤ Mb(χQ)(x).

Since Mb is bounded from (Eq
p)t(Rn) to (Es

r )t(Rn), then by Lemma 3 and noting that β/n = 1/q− 1/s, we
obtain that

1
|Q|β/n+1/s ∥b(·)−bQ∥(Es

r )t(Q) ≤
1

|Q|β/n+1/s ∥Mb(χQ)(·)∥(Es
r )t(Q)

≤ C
|Q|β/n+1/s ∥χQ∥(Eq

p)t(Rn)

≤C,

which implies (1.1) since the cube Q ⊂ Rn is arbitrary.
(3) ⇒ (4): Assume (1.1) holds, we will prove (1.2). For any fixed cube Q, by Hölder’s inequality and

Lemma 3, it is easy to see that

1
|Q|1+β/n

∫
Q
|b(x)−bQ|dx ≤ C

|Q|1+β/n
∥b(·)−bQ∥(Es

r )t(Q) ∥χQ∥(Es′
r′ )t(Rn)

≤ C
|Q|β/n+1/s

∥b(·)−bQ∥(Es
r )t(Q)

≤C.

(4) ⇒ (1): It follows from Lemma 1 directly, thus we omit the details.
The proof of Theorem 3 is completed.

Proof of Theorem 5. (1) ⇒ (2): Assume b ∈ Λ̇β (Rn) and b ≥ 0. For any locally integral function f , we
have

|[b,M]( f )(x)|= |b(x)M( f )(x)−M(b f )(x)|

≤ sup
Q∋x

1
|Q|

∫
Q
|b(x)−b(y)∥ f (y)|dy

≤C∥b∥
Λ̇β

sup
Q∋x

1
|Q|1−β/n

∫
Q
| f (y)|dy

≤C∥b∥
Λ̇β

Mβ ( f )(x).

By Lemma 2, we obtain that [b,M] is bounded from (Eq
p)t(Rn) to (Es

r )t(Rn).
(2)⇒ (3):For any fixed cube Q and any x ∈ Q, it is easy to see that

MQ (χQ)(x) = χQ(x) for any x ∈ Q,

then we have
M (χQ)(x) = χQ(x) and M (bχQ)(x) = MQ(b)(x) for any x ∈ Q. (3.1)

By (3.1), we obtain that

b(x)−MQ(b)(x) = b(x)M (χQ)(x)−M (bχQ)(x) = [b,M] (χQ)(x).

Since [b,M] is bounded from (Eq
p)t(Rn) to (Es

r )t(Rn) and β/n = 1/q−1/s, by Lemma 3, we have
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1
|Q|β/n+1/s

∥b(·)−MQ(b)(·)∥(Es
r )t(Q) =

1
|Q|β/n+1/s

∥[b,M](χQ)(·)∥(Es
r )t(Q)

≤ C
|Q|β/n+1/s ∥χQ∥(Eq

p)t(Rn)

≤C,

which implies (1.3).

(3) ⇒ (4): Assume (1.3) holds, then for any fixed cube Q, by Hölder’s inequality and (1.3), it is easy
to see that

1
|Q|1+β/n

∫
Q
|b(x)−MQ(b)(x)|dx ≤ C

|Q|1+β/n
∥b(·)−MQ(b)(·)∥(Es

r )t(Q) ∥χQ∥(Es′
r′ )t(Rn)

≤ C
|Q|β/n+1/s

∥b(·)−MQ(b)(·)∥(Es
r )t(Q)

≤C,

where the constant C is independent of Q. Thus we have (1.4).

(4) ⇒ (1): To prove b ∈ Λ̇β (Rn), by Lemma 1, it suffices to show that there is a constant C > 0 such
that for any fixed cube Q,

1
|Q|1+β/n

∫
Q
|b(x)−bQ|dx ≤C.

For any fixed cube Q, let E = {x ∈ Q : b(x)≤ bQ} and F = {x ∈ Q : b(x)> bQ}. Since for any x ∈ E we have
b(x)≤ bQ ≤ MQ(b)(x), then for any x ∈ E,

|b(x)−bQ| ≤ |b(x)−MQ(b)(x)| .

By Lemma 4 and (1.4), we have

1
|Q|1+β/n

∫
Q
|b(x)−bQ|dx =

1
|Q|1+β/n

∫
E∪F

|b(x)−bQ|dx

=
2

|Q|1+β/n

∫
E
|b(x)−bQ|dx

≤ 2
|Q|1+β/n

∫
E
|b(x)−MQ(b)(x)|dx

≤ 2
|Q|1+β/n

∫
Q
|b(x)−MQ(b)(x)|dx

≤C.

Thus we obtain that b∈ Λ̇β (Rn). Next, we will prove b≥ 0, it suffices to show b− = 0, where b− =−min{b,0}.
Let b+ = |b|−b−, then b = b+−b−. For any fixed cube Q and x ∈ Q, we observe that

0 ≤ b+(x)≤ |b(x)| ≤ MQ(b)(x),

then we have
0 ≤ b−(x)≤ MQ(b)(x)−b+(x)+b−(x) = MQ(b)(x)−b(x).



7 Some characterizations of Lipschitz spaces via commutators of the Hardy-Littlewood maximal operator on slice spaces 229

Combining with the above estimates and (1.4), we can see that

1
|Q|

∫
Q

b−(x)dx ≤ 1
|Q|

∫
Q
|MQ(b)(x)−b(x)|

≤ |Q|β/n
(

1
|Q|1+β/n

∫
Q
|b(x)−MQ(b)(x)|dx

)
≤C|Q|β/n.

Thus, b− = 0 follows from Lebesgue’s differentiation theorem.
The proof of Theorem 5 is completed.
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