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Abstract. To study the method of trajectory tracking for robotic arms, the traditional tracking method 

has low accuracy and cannot realize the complex tracking tasks. Compared with traditional methods, 

deep reinforcement learning is an effective scheme with the advantages of robustness and solving 

complex problems. This study aims to improve the tracking efficiency of robotic arms based on deep 

reinforcement learning. Thereby, we propose an approach to improve the proximal policy 

optimization (Improved-PPO) in this paper, which can be applied to multiple degrees of freedom 

robotic arms for trajectory tracking. In this study, proximal policy optimization (PPO) and model 

predictive control (MPC) are integrated to provide an effective algorithm for robotic arm applications. 

MPC is employed for trajectory prediction to design the controller. Further, the Improved-PPO 

algorithm is employed for trajectory tracking. The Improved-PPO algorithm is further compared with 

the asynchronous advantage actor-critic (A3C) and PPO algorithms. The simulation results show that 

the convergence speed of the Improved-PPO algorithm is increased by 84.3% and 15.4% compared 

with the A3C and PPO algorithms. This method provides a new research concept for robotic arm 

trajectory tracking. 
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1. INTRODUCTION 

With the continuous development of the global manufacturing industry, robotic arms are widely used 

in the fields of industry and transportation [1]. The robotic arm needs to plan the task path and track the 

trajectory to meet complex task requirements [2]. The complexity, strong coupling, and overfitting of robotic 

arms make trajectory tracking extremely challenging. Therefore, this paper further investigates an efficient 

method for robotic arm trajectory tracking. 

Currently, the trajectory tracking algorithm is mainly based on traditional methods and deep 

reinforcement learning (DRL) algorithms. Carron et al. [3] proposed a model-based control method for 

robotic arms that uses collected offline data to realize offset-free tracking. Tang et al. [4] used a proximal 

policy optimization algorithm to train a neural network of robotic arms to solve trajectory planning problems 

in complex environments. However, this method uses a huge humanoid robot model for training, which 

requires a large training dataset and greatly increases the computational complexity. 

Traditional tracking methods are not reliable and cannot achieve high performance. Therefore, deep 

reinforcement learning-based methods are effective approaches for trajectory tracking. We further 

investigate the work of robotic arms combining model predictive control (MPC) with deep reinforcement 

learning. Jiang et al. [5] proposed a multi-agent reinforcement learning-based trajectory planning for dual-

arm robots, named multi-agent twin delayed deep deterministic policy gradient (MATD3), for a real-time 

inverse kinematics solution for continuum manipulators. Pang et al. [6] introduced two reinforcement 
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learning-based trajectory compensation methods. The proposed learning algorithms were evaluated on a 6-

DoF industrial robot manipulator to follow different kinds of reference paths, such as square or circular 

paths, or to track trajectories on a three-dimensional surface. This method compares the performance of the 

learning-based methods with the MPC. Wen et al. [7] proposed a novel framework based on a fuzzy 

controller reinforcement learning trajectory planning strategy for robot manipulators with large errors and 

poor stability in the trajectory tracking process. This method plans an optimal motion trajectory through the 

reinforcement learning algorithm so that the end of the manipulator can track the optimal trajectory and 

realize effective obstacle avoidance. In recent literature, Shin et al. [8] proposed a new algorithm that 

combines meta-reinforcement learning with MPC, which is based on an offline strategy of meta-

reinforcement learning and transformation samples generated by MPC to train the strategy. However, this 

method uses an offline strategy and heavily relies on MPC-generated samples for training. 

As can be seen from the above research, the combination of model predictive control with deep 

reinforcement learning achieves superior results, but there is less research in the field of robotic arm 

trajectory tracking. Therefore, the trajectory tracking of the robotic arm is further studied. This paper 

proposes a method for trajectory tracking with improved proximal policy optimization (Improved-PPO). The 

main contributions of this paper can be described as follows: 

(1) We propose an improved PPO approach, which can be applied to multiple degrees of freedom 

robotic arms for trajectory tracking. 

(2) In this paper, PPO and MPC are integrated to provide an effective algorithm for robotic arm 

applications. 

(3) Compared with the A3C and PPO algorithms, the convergence speed of the Improved-PPO 

algorithm is increased by 84.3% and 15.4%. 

The main content of the work is described as follows. Section 2 presents the kinematic model of the 

robotic arm. Section 3 introduces the trajectory tracking algorithm based on deep reinforcement learning. In 

Section 4, the simulation results of different deep reinforcement learning algorithms are presented. Finally, in 

Section 5, we summarize our research progress. 

2. KINEMATICS MODEL OF THE ROBOTIC ARM 

In this section, the kinematic analysis of the robotic arm is presented. The end-effector of the robotic 

arm is taken as the object of study, and its position and posture changes are used as a reference to perform 

the trajectory action. The kinematic equations of the end-effector of the robotic arm are derived as follows: 
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where T[ , , ]X x y=   is defined as the actual spatial posture of the end-effector of the robotic arm in Cartesian 

space, and ( , )x y  represents the actual position of the end-effector of the robotic arm in Cartesian space. 

  represents the joint angle of the end-effector of the robotic arm, which is the angle between link i  and link 

1i − . T[ , , ]r r r rX x y=   represents the reference posture of the end-effector in Cartesian space, and ( , )r rx y  

represents the reference position of the end-effector in Cartesian space. r  is the reference joint angle of the 

end-effector of the robotic arm, T[ , ]u v w=  represents the actual control input of the whole robot system, and 

T[ , ]r r ru v w=  represents the reference control input of the robot system. v  is the linear velocity of the end-

effector of the robotic arm, and w  is the angular velocity of the end-effector of the robotic arm. rv  
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represents the reference linear velocity of the end-effector of the robotic arm, and rw  represents the 

reference angular velocity of the end-effector of the robotic arm. Finally, the tracking error model of the 

robotic arm end-effector is obtained as follows: 
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where [ , , ]e e ex y   is the error vector, ( , )e ex y  is the deviation between the actual position and the reference 

position, and 
e  is the angle deviation. 

3. TRAJECTORY TRACKING ALGORITHM 

3.1. Deep reinforcement learning 

Deep reinforcement learning is an intelligent algorithm that combines the perception ability of deep 

learning (DL) with the decision-making ability of reinforcement learning (RL). DL uses convolutional neural 

networks to train value networks and policy networks to obtain information from the environment, which 

provides information about the state of the current environment to an intelligent agent. RL maps the current 

state to action to obtain the maximum reward. 

At present, the deep reinforcement learning continuous control [9] algorithm mainly includes 

asynchronous advantage actor-critic (A3C) and proximal policy optimization (PPO). The A3C algorithm is 

an asynchronous multi-threading algorithm that optimizes the actor-critic method [10], which has better 

convergence. However, the A3C algorithm needs to run the data first to calculate the gradient and then 

update the global network.  

In addition to the A3C algorithm, the PPO algorithm [11] is essentially an on-policy algorithm that can 

utilize the sampled samples numerous times, solving the problem of low utilization of samples to a certain 

extent and thus making up for the shortcomings of the A3C algorithm. Based on the policy gradient (PG), the 

PPO algorithm performs better while updating the policy problem offline, transforming the on-policy into an 

off-policy [12], and adding constraints to the objective function to form the PPO. 

The PPO algorithm effectively solves the problems of PG learning rate and step size. If the step size is 

too large, the result is jittery and does not converge. The PPO algorithm uses the ratio of new and old 

strategies, which can solve the problem that the learning rate is difficult to determine in the PG algorithm. 

Therefore, this paper makes improvements based on the PPO algorithm. 

3.2. Improved-PPO algorithm 

To improve the robustness of the tracking algorithm, the PPO algorithm is improved based on the 

stable policy gradient. The PG algorithm calculates an unbiased estimate of the policy gradient and uses 

stochastic gradient ascent (SGA) to update the parameters . The gradient is estimated as: 

ˆˆĝ E log ( )t t t ta s A 
 =  
 

, (4) 

where   is the random policy, ˆ
tA  is the estimate of the advantage function for the time step t , Ê t  is the 

empirical mean of a finite sample, and   is the sign of the gradient. 

However, the PG algorithm has low sampling efficiency, so the PPO algorithm introduces an important 

sampling method [13] to improve the sampling efficiency. The probability density function (PDF) of the 

network is ( )p x . The probability density function of the network with another parameter is ( )q x . As is 

shown in Equation (5). 
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where ( ) / ( )p x q x  represents the weight. When the weight is too large, ~E x q  is negative. When the number 

of samples is large enough, ~E x q  is positive. The policy and maximization constraint is updated by the PPO 

algorithm: 
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where ( ) ( ) / ( )
new oldt t t t tr a s a s  =   .  represents the penalty coefficient. 

old  represents the policy 

parameter before the update, and 
new  represents the policy parameter after the update.  

Table 1 

Pseudocode of the Improved-PPO algorithm 

Input: ( , , )t t ts a r , new , old  

Output: KL,   

Initialize replay buffer in R 

For {1, , }i N  do 

 for t 1,T=  do 

  Select ta  based on the MPC policy and  

 Obtain the predictive reward tr  and ts   

 Store transition ( , , )t t ts a r  in R 

 end for 

 Run policy   for T  timesteps, collecting ( , , )t t ts a r  

 Estimate advantages 1 1
1 1

ˆ ( ) ( )T t T
t t t t T tA V s r r r V s− + −

+ −= − + +  + +  +   

 
old  ← 

new  

 for {1, , }j M  do 
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old old newt t tJ r A s a KL  

  =  −      

 new old J =  +   

 end for 

 for {1, , }j O  do 
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 Update   by a gradient method w.r.t  LOL(∅) 

 end for 

 If targe 2KL KL   then 

 / 2     

 Else targe / 2KL KL  then 

 2  

 endIf 

ENDFor 
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The pseudocode of the Improved-PPO algorithm is shown in Table 1. KL [14] represents the scatter 

value of the policy before and after the update. When KL is less than twice the target value,   decreased it 

by half. When KL is greater than half of the target value,   increased by a factor of two [15]. 

4. SIMULATION RESULTS AND DISCUSSIONS 

4.1. MPC simulation results 

Model predictive control is a special control method that solves an open-loop optimal control problem, 

which is essentially an online rolling optimization. MPC has three basic features [16], which are a predictive 

model, rolling optimization, and feedback correction. MPC has the advantages of simple modeling, strong 

robustness, and stable performance. 

The MPC designer toolbox is based on MATLAB to design the MPC controller. Then the MPC 

controller outputs the control variables to the robot arm. Finally, the arm outputs the variables to the state 

estimator. The MPC controller is further designed to adjust the stability of the controller and ensure that it 

can converge to a steady state. Finally, the parameters of the MPC controller in steady state are defined as a 

model prediction horizon of 15, a control horizon of 2, a sampling period of 1 unit, a step size of 5 between 

each period, and a simulation time of 30s. Then the minimum and maximum constraints are adjusted, and the 

weight coefficients are optimized to 0.6. 

The MPC simulation results are shown in Fig. 1. The reference velocity and the reference angular 

velocity are shown as state inputs in Fig. 1a. The specific actual values of output are shown in Fig. 1b. To 

verify the superiority of MPC, the trajectory tracking experiment for a circular trajectory is shown in Fig. 1c. 

The variation curves of the lateral position x, longitudinal position y, and joint angle θ of the end-effector of 

the robotic arm tracking output are shown in Fig. 1d. 

 

 

Fig. 1 – MPC simulation results: a) MPC reference value; b) MPC actual value;  

c) circular trajectory tracking diagram, d) position variation curve. 
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4.2. Improved PPO algorithm results 

This simulation experiment is based on Python and MATLAB 2022a to build the simulation 

environment. The SIASUN SRC robot arm is trained based on the OpenAI Gym [17] development kit. In 

addition, we built a server running the Improved-PPO algorithm with an Intel(R) Core i7-11800H processor, 

64G of RAM, and an NVIDIA GeForce RTX3090 GPU. The operating system is Windows 10. TensorFlow [18] 

is used to build the neural network model of the robotic arm. Numpy is used to process the data for learning. 

After several simulations, the maximum number of training episodes for the Improved-PPO algorithm 

is 10 000, and the maximum number of steps is 100. The actor learning rate is 0.0001, and the critic learning 

rate is 0.0002. The reward discount factor is 0.99, and the difference between the old and new policies is set 

to 0.2. 

The average reward curve of the Improved-PPO algorithm is shown in Fig. 2. The reward curve for the 

training set of 10000 with the same parameters. The reward curve drops to the lowest point at the beginning 

and then slowly rises to the highest average reward value of –102. The overall reward of the Improved-PPO 

algorithm is high. 

To further verify the reliability of the Improved-PPO algorithm, we compare the Improved-PPO 

algorithm with the A3C and PPO algorithms. The average reward curve of the A3C and PPO algorithms is 

shown in Fig. 3. Figure 3a shows the average reward curve of the A3C algorithm. The A3C algorithm has 

the lowest average reward value among the three algorithms, reaching −820 at episode 167. The A3C 

algorithm does not train well and fluctuates a lot at the beginning of training. It converges around 5000 sets, 

and the overall reward is low. Fig. 3b shows the average reward curve of the PPO algorithm. The reward of 

the PPO algorithm fluctuates greatly, and the reward increases linearly from the lowest at the beginning of 

the training. Then it stabilizes around a reward of −600. 
 

 
Fig. 2 – The average reward curve of the Improved-PPO algorithm. 

 
Fig. 3 – The average reward curve of the A3C and PPO algorithms: a) A3C algorithm; b) PPO algorithm. 
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The average reward values of the three different deep reinforcement learning algorithms are compared 

as shown in Table 2. The Improved-PPO algorithm has the highest reward of −102 at episode 570. It 

converges around episode 3500, and the convergence speed is superior to that of the A3C and PPO 

algorithms. Compared with the A3C algorithm, the Improved-PPO algorithm has improved the convergence 

speed by 84.3% and the reward value by 77.8%. Compared with the PPO algorithm, the Improved-PPO 

algorithm has improved the convergence speed by 15.4% and the reward value by 54.2%. 

Table 2 

The average reward values of the three algorithms 

Algorithm Minimum reward value Episode Maximum reward value Episode 

A3C −820 167 -460 3624 

PPO −776 24 -223 674 

Improved-PPO −708 30 -102 570 

4.3. Analysis of simulation results 

In this paper, the simulation environment is built based on the virtual robot experimentation platform 

(V-REP) software. A remote application programming interface (API) [19] is used by V-REP for interactive 

simulation with Python. The Improved-PPO algorithm is applied to the simulation environment, and the 

robot arm end-effector is used as a mass tracking trajectory. The simulation is stopped when the last episode 

is finished. 

The robotic arm repeatedly tracks the trajectory ten times, and the time to complete each track is 

recorded as shown in Table 3. From the results in Table 3, it can be seen that the shortest time among 

the ten experiments is the fourth experiment, with 46.3 s to complete the trajectory tracking. The results 

of the fourth V-REP simulation are shown in Fig. 4. As can be seen from Fig. 4a, the robot arm 

completes the trajectory tracking until the trajectory tracking is closed. From Fig. 4b, it can be seen that 

the robotic arm starts to track the trajectory after 12 s. The robotic arm further tracks the trajectory 

counterclockwise along the negative direction of the X-axis and the positive direction of the Y-axis. 

Finally, the trajectory tracking is finished with the robot arms at 46.3 s and reaches a steady state. 

Therefore, the simulation experiment verifies the effectiveness of the Improved-PPO trajectory tracking 

algorithm. 

Table 3 

The trajectory tracking completion time of the robotic arm 

Group Time Group Time 

1 46.80 s 6 48.10 s 

2 47.25 s 7 47.90 s 

3 47.45 s 8 47.50 s 

4 46.30 s 9 48.00 s 

5 48.00 s 10 47.70 s 

 

From the simulation experimental results in Fig. 4, it can be seen that there is no displacement change 

of the end-effector of the robotic arm when running the trajectory tracking action. Therefore, the joint angle 

of the end-effector is constant in the spatial coordinate system, and we further consider the position trajectory 

tracking variation of the end-effector of the robotic arm. 
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Fig. 4 – The results of the fourth V-REP simulation: a) robotic arm simulation of V-REP; b) simulation results. 

The trajectory tracking curve of the end-effector of the robotic arm is shown in Fig. 5. The solid blue 

line in Fig. 5a is the expected trajectory of the robotic arm. The red solid line in Fig. 5b shows the actual 

trajectory of the robotic arm. The simulation results show that the Improved-PPO algorithm for robotic arm 

trajectory tracking is superior to the A3C and PPO algorithms. The Improved-PPO algorithm converges 

faster and has the shortest trajectory tracking time. The training process is stable, and the fluctuation is small. 

 

 
Fig. 5 – The end trajectory tracking curve of the robotic arm; a) the expected trajectory of the robotic arm; b) the actual trajectory 

of the robotic arm. 

Finally, we overlap and compare the expected trajectory of the robotic arm in Fig. 5a with the actual 

trajectory of the robotic arm in Fig. 5b, and the comparison results are shown in Fig. 6. As can be seen in 

Fig. 6, the blue circle shape indicates the expected trajectory of the robotic arm corresponding to the 

trajectory in Fig. 5a, and the red cross shape indicates the actual trajectory of the robotic arm corresponding 

to the trajectory in Fig. 5b. The expected trajectory and the actual trajectory of the robotic arm perfectly 

coincide with each other, and the actual trajectory can track the expected trajectory very well, which shows a 

satisfactory performance. The comparison results demonstrate that the Improved-PPO algorithm proposed in 

this paper is superior to other traditional classical algorithms and can realize the trajectory tracking of the 

robotic arm with a certain degree of feasibility. 
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Fig. 6 – Comparison of trajectory tracking for the robotic arm. 

5. CONCLUSIONS 

In this paper, we propose an approach to improve proximal policy optimization that can be applied to 

multiple degrees of freedom robotic arms to track trajectory. MPC is employed for trajectory prediction to 

design the controller. Further, the improved PPO algorithm is employed for trajectory tracking. The 

Improved-PPO algorithm is further compared with the A3C and PPO algorithms. Compared with the A3C 

algorithm, the improved PPO algorithm increased the convergence speed by 84.3% and the reward value by 

77.8%. Compared with the PPO algorithm, the Improved-PPO algorithm improved the convergence speed by 

15.4% and increased the reward value by 54.2%. The simulation results show that the Improved-PPO 

algorithm outperforms the A3C and PPO algorithms for robotic arm trajectory tracking. The improved PPO 

algorithm converges faster and has the shortest trajectory tracking time. This method provides a new 

research idea for robotic arm trajectory tracking. 
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