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Abstract. Thermal infrared pedestrian tracking is a challenging task due to factors such as energy 

attenuation, sensor noise, occlusion, and complex backgrounds. In this paper, we design a two-level 

cascade model that tracks pedestrians in a thermal infrared video by the coarse-to-fine strategy to 

improve the tracking accuracy and success rate. The base tracker in the first level of our model is 

initialized and fine-tuned to get the first representation of a target which is then used to locate the 

target roughly. Aiming at finely locating a target, the second level consists of modality-specific part 

correlation filters that can capture patterns of thermal infrared pedestrians. The outputs of part 

correlation filters are aggregated together by normalized joint confidence that can effectively suppress 

low confidence predictions to make a final decision. We adaptively update each part filter by a 

weighted learning rate and accurately estimate pedestrian scale by a scale filter to improve tracking 

performance. The experimental results on the PTB-TIR benchmark show that the proposed cascade 

tracker further emphasizes crucial thermal infrared features. Thus it can effectively relieve the 

problem of object occlusion. Our experimental results show the superiority of the proposed tracker 

over the state-of-the-art trackers, including SRDCF, GFS-DCF, MCFTS, HDT, HCF, MLSSNet, 

HSSNet, SiamFC_tir, SVM, and L1APG. 

Keywords: location estimation, normalized joint confidence, object tracking, part correlation filter, 

thermal infrared pedestrian. 

1. INTRODUCTION 

Thermal InfraRed (TIR) pedestrian tracking is an important computer vision task with broad 

applications to surveillance and early warning. TIR videos are generally characterized by the following two 

features. First, the pixel intensities in a TIR video depend on the radiant temperatures of objects rather than 

reflected lights as in common visual videos. Second, a TIR video has much fewer details than a visible one 

due to its low resolution. Specifically, a TIR video generally lacks texture, color, and even structural 

information of an object. Therefore, traditional hand-crafted features such as Histogram of Oriented 

Gradients (HOG) [1] and Color Names (CN) [2] may lose their ability to effectively represent the appearance 

of an object, and thus their discrimination of different objects in the TIR domain is low [3]. TIR and visible 

tracking is compared in [4], concluding that well-designed features for TIR spectrum play a crucial role.  

In the past few years, numerous TIR pedestrian tracking models have been reported. Early TIR 

pedestrian trackers are based on motion tracking techniques such as Kalman filtering [5] and particle filtering 

[6, 7]. For example, Xu et al. [5] combined a Kalman filter with mean-shift clustering to detect and track 

pedestrians in videos obtained by a single night-vision camera installed on a vehicle. Wang et al. [6] tracked 

TIR pedestrians in a particle filter framework that fuses multi-features. After pre-processing features in 

thermal images with Wigner distribution, a particle filter-based motion tracker is proposed by Padole and 

Alexandre [7]. The abovementioned simplicity trackers lead them to suffer from background clutters. Thus, 

researchers also study some complex techniques to improve the performance of TIR trackers further. For 

example, [8] estimates TIR target position with the fluctuation of the relative change rate between two 

adjacent frames. [9] tracks TIR targets by using non-local dynamic pattern matching. 

https://www.doi.org/10.59277/PRA-SER.A.24.3.07
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Over the last few years, deep architectures [10-12] have brought impressive advances in computer 

vision tasks. Deep models are now trending ones in object tracking [13-17], and so does in TIR pedestrian 

tracking. Deep trackers can capture the general characteristics of an object in different video frames and are 

robust to external interferences such as illumination, occlusion, and motion blur. One type of the most 

popular deep trackers is Siamese-network-based trackers [18-22]. Recently, Liu et al. [19] proposed a video 

prediction network to update the TIR pedestrian tracking template of SiamRPN [18]. Zheng et al. [20] 

proposed a real-time TIR pedestrian tracker which combines a CNN-based prediction model with SiamRPN 

[18] to improve the tracking performance. Though these Siamese-network-based trackers [18-22] achieve 

better tracking performance than traditional ones, they are trained end-to-end and thus consume a large of 

computing resources. To solve such problems, Correlation Filters (CFs) are introduced to deep trackers. Ma 

et al. [14] first proposed to use hierarchical convolution to learn and express the tracking target. They 

improve the tracking accuracy by learning CFs in different layers. Liu et al. [23] proposed a CF-based 

ensemble tracker with multi-layer convolutional features for TIR tracking. But the tracking ability of such 

CF-based methods doesn't satisfy tracking objects' needs in severe occlusion scenes. 

The main idea of cascade CNN[24] is to gradually optimize from coarse to fine. The deformable part 

model [25] includes a global root filter and several component models. Each component model consists of a 

spatial model and a component filter. Sevilla Lara et al. [26] first proposed the object representation method 

Distribution Fields (DFs) for object tracking. And in [27] compared trackers based on spatial structure 

features with ones based on DFs and concludes that DFs are more suitable for TIR tracking. Motivated by 

the cascade CNN and the deformable part model, this paper proposes a two-level cascade model in a CF 

framework [28−32] for TIR pedestrian tracking. At the first level, the base tracker uses both deep features 

and hand-crafted ones to get the initial representation of a target which is then used to locate the target 

roughly. To refine these initial estimations, our model sets up the second level that consists of modality-

specific filters capturing low-level TIR patterns.  

The contributions of this paper are summarized as follows: 

1) Compared with existing TIR tracking methods, we designed a two-level cascade framework for 

tracking TIR pedestrians from coarse to fine. The base tracker in the first level is used for rough localization 

of the target, while the second level employs a modality-specific fine estimation module that captures 

patterns of thermal infrared pedestrians to improve accuracy. 

2) We proposed a novel fine estimation module. Firstly, we construct part filters based on the DFs 

using the rough position information provided by the base tracker. Then, we design a normalized joint 

confidence to aggregate the output of each part filter. The final position and scale of the target are obtained 

through a maximum aggregation response and scale estimation module. 

3) We developed an update strategy that preserves historical information for each part filter, effectively 

mitigating drift problems. Specifically, it improves the accuracy and success rate of tracking in occlusion 

scenarios. 

4) We conducted extensive experiments on the PTB-TIR [33] dataset, a benchmark for TIR pedestrian 

tracking, using 60 challenging sequences to demonstrate the effectiveness of the proposed model and 

achieved promising results. 

The rest of this paper is organized as follows. Section 2 provides a detailed description of the proposed 

two-level cascade tracker. Section 3 explains the evaluation procedure of the proposed tracker, and presents 

the experimental results and some analysis. Section 4 gives some conclusions. 

2. THE PROPOSED TWO-LEVEL CASCADE TRACKER 

Figure 1 shows the proposed two-level cascade tracker. The first level of our model initializes and fine-

tunes a base tracker followed by inputting a TIR video frame. Then the base tracker roughly locates the 

target pedestrian. Next, the fine location of the target is estimated by the second level termed as fine 

estimation module. Here, the base tracker usually is a tracker performing well to track the video sequence 

frame by frame. As shown in Fig. 1, the fine estimation module first divides the target into n components. 

Then it uses DFs based part filters to calculate the normalized joint confidence which is used by the scale 

estimation module to estimate the target scale. Finally, the final tracking decision is made with the bagging 

process. 
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Fig. 1 – The framework of the proposed tracker. 

2.1. Distribution fields 

Here we use DFs to model the appearance of a TIR pedestrian target. A target is first decomposed into 

n components from which local DF features are extracted. The smoothed DFs are constructed by (1). 

 ( ) ( )dfs( ) dfs ( , ), ( , ),
s f

I I i j k I i j k h h = =     (1) 

where ( )dfs ( , ),I i j k  is the smoothed DFs of video frame I at the i th row and the j th column, and k indicates 

the possible value of pixel ( , )I i j . ( )   is Kronecker delta function. 
s

h  is a 2D Gaussian kernel with the 
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h  is a 1D Gaussian kernel with the standard deviation f  along the feature 

dimension. ‘’ is the convolution operator. 

Suppose 1 2, , , nc c c  to be the n components of the target. The DFs of each component can be viewed 

as a local radiant temperature description of the target. Thus, our model adopts   dfs( ) 1,2, ,vc v n  

which are obtained by (1) as TIR-specific features of a target. 

2.2. Part correlation filters 

CFs for visual tracking has attracted considerable attention due to their high computational efficiency 

using the fast Fourier transform. In this work, we use Kernel Correlation Filter (KCF) [30] to build part CFs. 
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where   is a regularization parameter, and T( ( , )) ( ) ( , )v v v
t t tf o q o q=X w X  is the response of the filter. By 

using the kernel trick and Fourier convolution theorem, the optimal v
tw  of (2) can be expressed as 

,
( , ) ( ( , ))v v v

t t to q
o q o q=  w X  with (3): 

 1 ( )
( )

( ( ( , )), )
v
t v v

t t

g

o q
− =

 + X X
 (3) 

where ( )  and 1( )−   denote Fourier transform and its inverse transform, respectively.  is a kernel 

function. After training, we have the appearance representation in Fourier domain ( )v
tX  and the filter 

coefficient in Fourier domain ( )v
t . They are together formed a KCF [30] tracker which is served as a part 

correlation filter in our tracker. The response of each part filter to sample v
tX  is computed by (4): 

 1
1( ( ( , )) ( ))v v v v

t t t tP −
−=  X X  (4) 

where  is the element-wise product. 

2.3. The final location of a target 

To infer the final position of a target, we modify the aggregation strategy in [31] by considering both 

the value and the position of the maximum response of each part filter. For each component of a target 

pedestrian, we run its corresponding part correlation filter and get its part response map. The Peak-to-

Sidelobe Ratio (PSR) [31] confidence score of each part response map is computed by (5): 
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where v
tP

  and v
tP

  are the mean value and the standard deviation of the v th part response map, respectively. 

PSR v
t can be used to quantify the sharpness of the correlation peak, and the high value of PSR v

t  means the 

high matching score of the current frame to the previous frames. Besides the PSR confidence score, we also 

consider the Maximum Offset Constraint (MOC). The maximum response position of a part tracker drifts as 

time goes on and error is accumulated. To alleviate such drifting, we construct MOC in (6): 
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where v
t  and v

t denote the prediction shift of a base tracker and that of a part tracker for the v th component 

at t th frame, respectively. v controls the regular size of the maximum offset. MOCv
t  keep the final 

prediction near the original result, and thus dominates the drifting level. 

As given by (7), PSR v
t together with MOCv

t  is used to compute the normalized joint confidence score: 
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The final location of a target is obtained by computing the maximum response position ( , )final finalx y  

of two-level cascade model, as given by (8): 
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2.4. Model updating 

Our method adopts a CF as a part tracker. Since a correlation filter is sensitive to imaging conditions 

and appearance changes, the feature template of a target component should be continuously updated during 

tracking. Similar to traditional methods, we online update the classifier coefficients with simple linear 

interpolation. To decrease the influence of the responses of part trackers with low confidence, we adaptively 

update each part filter with an independent weighted learning rate. Similar to [31], the weights are controlled 

by a confidence score and a threshold. The appearance ( )v
tX  of a target is updated by (9). Accordingly, 

the correlation filter coefficient ( )v
t  is also updated by a similar method. 
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where   is a designated learning rate which is further weighted by confidence score Conf v
t  in our method. 

3. EXPERIMENTAL RESULTS AND ANALYSIS 

3.1. Implementation details and evaluation criteria 

We implement the proposed cascade model using MATLAB 2016b on an Intel(R) I7-10700 CPU and 

an NVIDIA GeForce RTX 3080 GPU. We use PTB-TIR [33] dataset as the TIR pedestrian tracking 

benchmark. The dataset includes 60 TIR sequences with annotations. Each sequence has ten attribute labels.  

Three trackers, i.e., GFS-DCF [34], HCF [14], and MCFTS [23] are respectively selected as the base 

tracker in our model. For the chosen base tracker, GFS-DCF [34] uses both depth features and hand-crafted 

features. HCF and MCFTS only use depth features. Particularly, MCFTS [23] is dedicated to TIR tracking. 

The intensity channel is not used for initialization and fine-tuning of GFS-DCF to speed up the tracking. 

Since GFS-DCF is an RGB tracker, we adapt the following parameters to present the different characters of 

TIR data. Following [23], the cell size of HOG features is 4. The configurations of HCF [14] and MCFTS 

[23] are the same as those reported in [14] and [23]. To construct DFs, we follow the parameters 

recommended in the [27]: Intensity bins of DFs is fixed as 16, spatial smoothing parameters s  and intensity 

smoothing parameter f  in (1) is [2,1] and 0.625 respectively. For each part CF, we use the same parameters 

as KCF [30]: regularization parameter in (2) and (3)   is 410− , threshold and Learning rate   in (9) is 0.1 

and 0.01 respectively. The regular size of the maximum offset v  in (6) is set to 5. How to optimally divide 

an object into n components is still an open problem. For simplicity, we directly divide the bounding box of a 

target pedestrian into n equal parts, with n being the square of a positive integer. We choose the scale filter of 

DSST [35] as the scale estimation module, and GFS-DCF [34] uses its own scale model.  

We use One-Pass Evaluation (OPE) plots to show the precision and success rate of trackers. A 

precision plot measures the precision over a range of thresholds and we report the precision score within a 

given threshold (20 pixels) in the legend. A success plot shows the ratios of successful frames at the 

threshold varying from 0 to 1 and the Area Under the Curve (AUC) of success rate will be given in its 

legend. More details of evaluation criteria can be found in [33]. Algorithm 1 gives a brief outline of our two-

level cascade model. In all experiments, we report the average result over 3 runs. 
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Algorithm 1 summarizes the main steps of the proposed tracking model. 

Algorithm 1 Proposed tracking model: iteration at frame t. 

Inputs: Video frame tI , previous target position 1 1t ti j− −（ , ）, scale 1ts − . 

Outputs: Estimated object position t ti j（ , ）, scale ts . 

Level 1: roughly locate the target position: 

Estimated object position t ti j（ , ） and scale ts  using base tracker. 

Level 2: fine estimation module: 

1: Extract target area in frame t  using Level 1 estimated target position t ti j（ , ） and scale ts . 

2: Divide the target area into n  components and extract the corresponding sub-target area for each 

component vc . 

3: Position estimation: 

foreach component vc  do: 

Extract smoothed DFs v

tX  using (1) and computing the corresponding response v

tP  using 1

v

t -w  

and (4). 

Compute the normalized joint confidence score Conf v

t  based on (7). 

Coarse-to-fine estimate the final object position ,final final

t t t ti j i j（ , ）=（ ） using (8). 

4: Scale estimation: 

Estimated object scale ts  using scale model DSST [35]. 

5: Model update: 

foreach part correlation filters do: 

Update appearance model ( )v

tX  using (9). 

Update scale model. 

3.2. The performance of fine estimation module 

In this section, we cascade the proposed fine estimation module with the abovementioned three base 

trackers to evaluate the influences of the fine estimation module on the tracking. 

3.2.1. Tracking speed 

First of all, we analyse the influence of n on tracking speed. On our platform, the OPE speed of GFS-

DCF [34], HCF [14], and MCFTS [23] are respectively 7.7 FPS, 29 FPS, and 7 FPS, while the tracking 

speed of cascade trackers with a different number of target components are listed in Table 1. Compared to 

the speed of the corresponding base tracker, we can see that our fine estimation module slows down the 

tracking speed. The tracking speed is gradually decreased with increasing n. The deceleration is extremely 

significant when n is greater than 9. Thus, in practice, n can be 4 or 9. To balance speed and performance, we 

set n to 4 in following experiments. 

Table 1 

The tracking speed of cascade trackers 

Trackers 1-Speed(FPS) 4-Speed(FPS) 9-Speed(FPS) 16-Speed(FPS) 

Cascade_GFS-DCF 5.8 5.2 4.3 3.6 

Cascade_HCF 12.0 9.5 7.0 5.3 

Cascade_MCFTS 5.3 4.8 4.1 3.4 
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3.2.2. Tracking precision and success rate 

Figure 2 shows the precision and success plots of cascade trackers and base trackers. The cascade 

trackers are highlighted in bold. The precision plots suggest that proposed cascade methods provide an 

absolute gain of 1.7%, 10%, and 11.5% improve accuracy over base methods GFS-DCF [34], MCFTS [23], 

and HCF [14], respectively. The success plots show the success rate overall of 60 sequences. From the 

resulting plots, we can see that our cascade trackers achieve AUC of 0.598, 0.527, and 0.550 for the base 

tracker GFS-DCF [34], MCFTS [23], and HCF [14], respectively. Such AUCs significantly outperform 

corresponding base trackers. 

 

 

Fig. 2 – The overall performance of the trackers using OPE plots. 

In addition, we find that the boosting effects of our fine estimation module on tracking depend on the 

type of the base tracker. The performance improvement of Cascade_HCF is more considerable than 

Cascade_MCFTS and Cascade_GFS-DCF. Such different improvements may be caused by the different 

target features used in the base trackers. MCFTS [23] uses more depth features than HCF [14]. GFS-DCF 

[34] uses both hand-crafted and depth features, having a good discrimination ability to avoid drifts. 

Compared to base trackers, the corresponding cascade tracker improves the tracking performance to a certain 

degree, proving that our tracker uses more suitable features for characterizing a TIR pedestrian than the base 

tracker. Adding batch normalized weights and adaptive updating strategy, the drift problem that is one of the 

most challenging problems besetting tracking tasks is further relieved. As a result, the overall tracking 

performance is improved. 

3.2.3. Attributes analysis 

To further evaluate the strength and weakness of the proposed model, we evaluate ten common 

attributes in PTB-TIR dataset: DeFormation (DF), OCClusion (OCC), Scale Variation (SV), Background 

Clutter (BC), Low Resolution (LR), Fast Motion (FM), Motion Blur (MB), Out-of-View (OV), Intensity 

Variation (IV), and Thermal Crossover (TC). The AUC of success rate and the precision score on attribute 

subsets are listed in Table 2 and Table 3, respectively. The best results are highlighted in bold. We can see 

that the proposed cascade tracking strategy mainly improves the performance on DF, OCC, and BC subsets. 

For Cascade_GFS-DCF, the tracking accuracy and tracking success rate are improved for the attributes DF, 

OCC, and BC. Cascade_MCFTS performs better on the attributes of DF, OCC, BC, LR, FM, OV, MB, and 

SV. Cascade_HCF has a better tracking success rate than other trackers on all attribute subsets, and its 

tracking accuracy is better than others except for attribute IV. Figure 3 shows several tracking results of 

Cascade_GFS-DCF and GFS-DCF [34] for visually demonstrating the performance of our tracker. The 

overlap rates are plotted to assist qualitative analysis. The corresponding cascade tracker performs best for 

each selected base one on the three attributes: DF, OCC, and BC. Therefore, detailed analysis on these three 

attributes is given. 
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Table 2 

The AUC of success rate on ten attribute subsets 

Trackers 
Attribute 

DF OCC BC IV LR FM MB OV SV TC 

Cascade_GFS-DCF 0.598 0.577 0.589 0.445 0.575 0.669 0.583 0.635 0.583 0.567 

GFS-DCF 0.588 0.556 0.570 0.457 0.655 0.688 0.623 0.653 0.594 0.598 

Cascade_MCFTS 0.527 0.514 0.513 0.342 0.530 0.633 0.501 0.545 0.501 0.538 

MCFTS 0.492 0.501 0.483 0.385 0.418 0.553 0.444 0.537 0.465 0.558 

Cascade_HCF 0.550 0.533 0.537 0.364 0.568 0.692 0.536 0.532 0.532 0.560 

HCF 0.448 0.449 0.448 0.327 0.375 0.486 0.417 0.391 0.391 0.470 

 

Table 3 

The precision score on ten attribute subsets 

Trackers 
Attribute 

DF OCC BC IV LR FM MB OV SV TC 

Cascade_GFS-DCF 0.822 0.782 0.799 0.460 0.884 0.974 0.841 0.764 0.781 0.792 

GFS-DCF 0.795 0.747 0.765 0.546 0.935 0.986 0.851 0.797 0.795 0.819 

Cascade_MCFTS 0.759 0.726 0.742 0.277 0.882 0.880 0.746 0.699 0.718 0.796 

MCFTS 0.690 0.683 0.669 0.310 0.732 0.806 0.658 0.614 0.660 0.776 

Cascade_HCF 0.748 0.715 0.730 0.395 0.894 0.935 0.786 0.623 0.718 0.795 

HCF 0.671 0.657 0.662 0.443 0.696 0.762 0.656 0.519 0.618 0.734 

 

 

Attribute DF. This subset consists of three challenging TIR sequences that have DF properties with 

pedestrians deform in motion. For example, in the 458th frame of the sequence “crossing”, the tracking 

pedestrian rotates body during moving. In the 426th frame of the sequence “crouching” and the 110th frame of 

the sequence “street2”, the limbs and trunk of the pedestrian deform during walking. Since GFS-DCF [34] 

cannot accurately characterize a TIR target under such deformation circumstances, its tracking performance 

degrades on this subset. 

Attribute BC. The video backgrounds in this subset contain similar pedestrians to the target and(or) 

complex context. For example, background interferences appear around the tracking target in the 458th frame 

of the sequence “crossing”. In the 426th frame of the sequence “crouching” and in the 110th frame of the 

sequence “street2”, several fake pedestrians appear around the true one. GFS-DCF [34] suffers from serious 

tracking drifts, resulting in wrong prediction in the case of such BC occurring. Our cascade tracker adopts 

batch normalized confidence and adaptive online template updating strategy. As a result, it can more 

effectively suppress tracking drifts and is more robust to BC interferences than the base tracker. 

 Attribute OCC. OCC is caused by the tracking target being obscured by unexpected objects. For 

example, in the 426th frame of the sequence “crouching” and the 110th frame of the sequence “street2”, the 

target is occluded in the normal motion process. For sequence “crouching”, most parts of the target are 

occluded by other objects. On this subset, GFS-DCF [34] drifts slowly, and eventually, it tracks a wrong 

target. On sequence “street2”, GFS-DCF [34] drifts rapidly since the target is completely occluded. Above 

results indicate that GFS-DCF [34] is insufficient to deal with the sudden changes of occlusion. Our model 

adds TIR features to the features extracted by a base tracker, resulting in strong discrimination ability and 

strong robustness to the appearance changes. Together with the strategy of batch normalized weight and 

adaptive online model updating, our tracker can accurately predict the overall position. Thus it can 

effectively track a target under occlusion. Moreover, from the overlap rates, we can see that the tracking box 

of Cascade_GFS-DCF is closer to the ground truth, which is beneficial to long-term tracking.  
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Fig. 3 – Tracking results on three challenging TIR sequences. 

3.3. Comparison to other trackers 

We compare our two-level cascade tracker to 10 state-of-the-art trackers that cover a wide range of 

implementation approaches on PTB-TIR. The 10 compared trackers consist of five CF-based trackers: 

SRDCF [36], GFS-DCF [34], MCFTS [23], HDT [16], and HCF [14]. Three Siamese-network-based 

trackers, including MLSSNet [37], HSSNet [38], and SiamFC_tir [39]. Two other trackers: SVM [40] and 

sparse representation based tracker L1APG [41]. For more details about these trackers, please refer to the 

corresponding literature. Figure 4 visualizes comparison results. In Fig. 4, the farther away from the circle's 

center, the better performance a tracker achieves. We can see that Cascade_GFS-DCF obtains the best 

precision score and the AUC of success rate among all compared trackers, demonstrating the good 

performance of the two-level cascade tracker for predicting the position of TIR pedestrian. 
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Fig. 4 – Comparison of the proposed tracker with other ones on PTB-TIR datasets. 

4. CONCLUSIONS 

In this work, a two-level cascade model for tracking TIR pedestrians has been designed. Unlike the 
previous trackers, we introduce a general cascade framework to TIR target tracking, dividing the tracking 
model into two levels: coarse location estimation based on base tracker and adaptive fine estimation module 
based on TIR details. Using the adaptive weighting update strategy and normalized joint confidence, our 
tracker is robust to occlusion, background clutter, and appearance changes. 

The experimental results show that our method has a better tracking performance on the TIR sequence 
than the base trackers in tracking precision and success rate. However, TIR tracking remains a challenging 
task due to the complex scenes. In the future, we are going to focus on improving the tracking speed and 
exploring explainable TIR features. 
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