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Abstract. While quantum algorithms are known to be very powerful, there are also people who think 

that “quantum computers will never be able to run the if/then/else type of logic”. On the other hand, 

though many experts know that such a claim is a misconception, in literature there is still lacking of a 

general description of the procedure for implementing the if/then/else conditional statements in the 

quantum way. In the current work, we present such a general method in details, explaining how the 

unitary transformation required for any if/then/else operation can be constructed from simpler unitary 

transformations and projective operators. Moreover, by using the well-known controlled-NOT gate, 

Fredkin gate and Toffoli gate as examples, it is elaborated that the structure of the existing conditional 

quantum operations agrees with our general method. An even more complicated example is also 

provided, showing that our method is convenient for solving real-world if/then/else problems with 

quantum computers. Thus the result not only refutes the above claim, but also helps to develop the 

skill on quantum programming. 
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1. INTRODUCTION 

The success of Shor’s algorithm for factoring large integers [1] and Grover’s search algorithm [2] 

highlighted the potential power of quantum computers. Nowadays, quantum algorithms further find its place 

in the researches of neural networks and machine learning [3, 4], which contribute to the blooming of 

artificial intelligence technology. Nevertheless, there are still doubts whether quantum computers can handle 

all the tasks that classical computers are capable of. In a recent interview [5], Andy Stanford Clark, IBM 

CTO for UK and Ireland, claimed that “quantum computers will never be able to run the if/then/else type of 

logic that we’re familiar with our traditional Von Neumann architecture computers, (where they are) 

sequentially going from step to step”. But in fact, as it was already shown in Section 3.1.3 of our book [6], 

all classical if/then/else type of logic can be constructed in the quantum way. Unfortunately, the interview [5] 

gave no further explanation to the above claim. Thus it is hard to judge whether the “if/then/else type of 

logic” that A. S. Clark mentioned has a different meaning from what we usually know. But to avoid the 

confusion spreads, it seems necessary to demonstrate here that quantum computer can indeed implement the 

if/then/else conditional statement that we are familiar with when programming classical computers. 

Moreover, though in literature it is well known that many basic quantum gates are actually if/then/else 

operations [7], and some complicated implementations of the if/then/else conditional statement were 

introduced as the building blocks for certain quantum algorithms (e.g., Shor’s quantum correction code [8]), 

to our best knowledge, there is still lacking of a concrete description on how to construct such quantum 

conditional statement from scratch in general. Therefore, it is expected to fill the gap in the current paper. 

In the next section, the general method for accomplishing this task will be proposed. Then in 

Section 3.1, it will be shown that many known quantum gates actually fit this general method. More 

importantly, in Section 3.2, it will be elaborated how our general method can be applied on a complicated 

real-world if/then/else problem, which is a new example that has not appeared in our past papers before. 

Further applications of the result will be discussed briefly in Section 4. Finally, the conclusions of this paper 

will be summarized in Section 5. 

https://www.doi.org/10.59277/PRA-SER.A.24.3.09
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2. THE GENERAL METHOD 

As it is well known [9], the basic structure of the if/then/else conditional statement for a series of 

conditions and operations can be written as: 

 

Classical if/then/else conditional statement: 

If (the 1st Boolean condition is satisfied) Then (perform the 1st operation). 

Else if (the 2nd Boolean condition is satisfied) Then (perform the 2nd operation). 

...... 

Else if (the i-th Boolean condition is satisfied) Then (perform the i-th operation). 

...... 

 

To construct its quantum correspondence, the general idea is as follows. 

 

Quantum if/then/else conditional statement: 

i) Introduce two quantum registers X and Y, where X serves as the control register, while Y is the 

target register. Note that each register can be a multi-level system, instead of being limited to a single qubit. 

ii) Find a projective operator ( )X
iP  (i.e., it satisfies the requirement ( )

2
( ) ( )X X

i iP P=  so that it 

represents a physically implementable measurement) on X, such that the projection will be successful if the i-

th Boolean condition is satisfied. 

iii) Find a unitary operator ( )Y
iU  (i.e., it satisfies the requirement ( )( ) ( )Y Y

i iU U
+

=  so that it is a 

physically implementable transformation) on Y for performing the i-th operation. 

iv) Finally, applying on the composite system X Y  with the operation 

( ) ( ) .X Y
i i

i

U P U   (1) 

This completes the implementation of the if/then/else conditional statement. 

 

In this process, two things should be taken extra care of: 

a)  ( )X
iP  (when all possible values of i are taken) should be a complete measurement (i.e., 

( ) ( )X X
ii

P I=  where ( )XI  denotes the identity matrix having the same dimension as that of X ) on the 

control register X. That is, when X is an n-level system, there is a specific measurement basis (generally it 

can be taken as the computational basis)  0 , 1 ,..., 1n − , in which  ( )X
iP  can be expressed as 

 ( ) ,   0,..., 1X
i X

P i i i n= = − . Meanwhile, it is worth emphasizing again that all ( )Y
iU  ( 0,..., 1i n= − ) need 

to be unitary. 

b) If the task “if (the i-th condition is satisfied) then (perform the i-th operation)” merely gives explicit 

description of the condition and operation for one or few of the i values instead of all 0,..., 1i n= − , then we 

should provide the description of the condition and operation for all the rest i values ourselves. A simple way 

of completing these missing description is: when none of the explicitly given conditions is met, the 

corresponding operation can be taken as the identity operator I (whose matrix form is the identity matrix). 

That is, no change is made to the target register Y. Especially, in traditional Von Neumann architecture 

computers where the operations are performed sequentially from step to step, when implementing the “if 

(Boolean condition) then (consequent) else (alternative)” conditional statement, sometimes the alternative 

operation has not been defined by the time the consequent operation is performed. Instead, it is preferred to 

decide what alternative operation to perform only after the Boolean condition was evaluated and the result 

turned out to be false. Then in the quantum case, to maintain the freedom on choosing the alternative 

operation, the alternative operation can be taken as the identity operator I temporarily when constructing the 

operation U in Eq. (1). After U was applied, a measurement can be made on the control register X to see 

whether the result of the Boolean condition is false, then it can be decided whether another alternative 



3 Two examples of implementation of the if/then/else conditional statement with quantum computers 277 

operation needs to be performed on the target register Y. Or a second unitary operation U corresponding to 

another if/then conditional statement can be constructed, and applied on the composite system X Y  

without measuring X. 

These points are important because once they are satisfied, combining with the fact that 

( ) ( ) ( )( ) ,X X X
i ii ii X X

P P i i i i P+
  = =   (2) 

it can be proven that the operation U in Eq. (1) satisfies 

( )( ) ( )

1 1
( ) ( ) ( ) ( )

0 0

1 1
( ) ( ) ( ) ( ) ( ) ( )

0 0

,

n n
X Y X Y

i ii i

i i

n n
X Y Y X Y X Y

i i i i

i i

U U P U P U

P U U P I I

+
− −

+
 

= =

− −
+



= =

   
=     
   

=  =  =

 

 

 (3) 

where the identity matrix ( )YI  has the same dimension as that of the target register Y, while ( )X YI   has the 

same dimension as that of X Y . This result guarantees that U is unitary. As it is well-known, all unitary 

operations can be realized physically in principle. Thus, with the advance of technology, they can be 

implemented sooner or later. 

3. EXAMPLES 

3.1. Multi-qubit quantum gates 

Here it will be shown that some common multi-qubit quantum logic gates themselves already have the 

form of the if/then/else conditional statement, and their construction agrees with the above process. 

 

3.1.1. Controlled NOT (CNOT) gate [6,7] 

CNOT gate is defined as an operation on two registers A and B, such that if the content of A is 0 then 

leave the content of B unchanged, else if the content of A is 1 then invert the content of B (i.e., change 0 to 1 

and 1 to 0). Note that in this case, the content of either one of A and B is limited to a single bit. 

To accomplish the task in quantum computer, the registers A and B are taken as two qubits. The content 

0 (1) is presented as the quantum state 0  ( 1 ). Following the above general method, the condition “if the 

content of A is 0 (or 1)” is implemented by applying on the control register A with the projective operator 
( )

0 0 0A

A
P   (or ( )

1 1 1A

A
P  ). Meanwhile, the unitary operator on the target register B is taken as 

( ) ( )
0

B BU I  (or ( ) ( )
1

B B
xU   ), where ( )BI  is the identity operation on B, and ( )B

x  is the Pauli matrix x  

acting on B, whose matrix form in the computational basis     0 1 0 ,  1 0 1
T T

= =  is 

0 1
.

1 0
x

 
 =  

 
 (4) 

It is obvious that 0 1x =  and 1 0x = , i.e., it can indeed invert the content of the register. 

The unitary quantum operation that can implement the if/then/else conditional statement corresponding 

to CNOT gate is then constructed as 

( ) ( ) ( ) ( ) ( ) ( )
0 0 1 1 0 0 1 1 ,A B A B B B

CNOT xA A
U P U P U I  +  =  +   (5) 

whose matrix form is 
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1 0 0 0

0 1 0 0
.

0 0 0 1

0 0 1 0

CNOTU

 
 
 =
 
 
 

 (6) 

Applying it on all possible states 
A B

x y  (  , 0 , 1
A B

x y  ) of the composite system A B , and it 

can be verified that CNOTU  can indeed accomplish the desired task 

( ) .CNOT A B A B
U x y x x y =    (7) 

 

3.1.2. Controlled swap (CSWAP) gate [6,7] 

CSWAP gate is also known as the Fredkin gate. It applies on three registers A, B and C, where A is the 

control register while both B and C are the target registers. The goal is: if the content of A is 0 then keep both 

B and C unaltered, else if the content of A is 1 then swap the content of B and C. 

When constructing the quantum form of CSWAP gate, the condition “if the content of A is 0 (or 1)” is 

also implemented by the projective operators ( )
0 0 0A

A
P   and ( )

1 1 1A

A
P   acting on A. The 

corresponding unitary operators on B C  are ( ) ( ) ( )
0

BC B CU I I   (i.e., the identity operation) and 

( )
1

BC
SWAPU U . Here SWAPU  denotes the operation for swapping the states of B and C. When both B and C 

are qubits, the matrix form of SWAPU  in the computational basis is 

1 0 0 0

0 0 1 0
.

0 1 0 0

0 0 0 1

SWAPU

 
 
 =
 
 
 

 (8) 

Then the entire unitary operation on A B C   is 

( ) ( ) ( ) ( )
0 0 1 1

1 0 0 0 1 0 0 0

0 1 0 0 0 0 1 0
0 0 1 1

0 0 1 0 0 1 0 0

0 0 0 1 0 0 0 1

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0
.

0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1

A BC A BC
CSWAP

A A

BC BC

ABC

U P U P U=  + 

   
   
   =  + 
   
   
   

 
 
 
 
 
 =
 
 
 
 
 
  

 

(9) 

We can verify that 

( )0 0CSWAP A B C A B C
U x y x y  =    (10) 
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and 

( )1 1 ,CSWAP A B C A B C
U x y y x  =    (11) 

i.e., CSWAPU  is exactly what we want. 

When both B and C are multi-level systems so that their content are not limited to bits, all we need is to 

find the corresponding matrix form of SWAPU  to replace Eq. (8), and substitute it into Eq. (9) to obtain 

CSWAPU . 

 

3.1.3. Controlled-controlled NOT (CCNOT) gate [6,7] 

It is also called Toffoli gate. Similar to the CSWAP gate, it also applies on three registers, and keeps 

both B and C unaltered if the content of A is 0. The difference is when the content of A is 1, B is taken as the 

control register and C is taken as the target register, and a CNOT operation is performed on B C . 

For simplicity, suppose that the content of all three registers are limited to bits. Following the above 

procedure, the quantum operation for this gate can be found immediately as 

( )( ) ( )0 0 ( ) 1 1

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0
.

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0

BCB C
CCNOT CNOTA A

ABC

U I I U=   + 

 
 
 
 
 
 =
 
 
 
 
 
  

 (12) 

3.2. A more complicated example 

Now it will be shown how to construct the quantum form of the following conditional statement: 

 

If 3i   then 2i i , 

else if 3i =  then 7i , 

else if 3i   then 3i i − . 

(Here  0,1, ,7i .) 

 

At first glance, the quantum implementation of this conditional statement may appear difficult because 

it requires the comparison operation of i. But in fact there are only three possibilities that satisfy the 

condition 3i  , that is: 0i = , 1i = , and 2i = . Therefore, for the control register A where i is stored, only 

three projective operators ( )
0 0 0A

A
P  , ( )

1 1 1A

A
P   and ( )

2 2 2A

A
P   are needed to accomplish the test 

of the condition 3i  . Likewise, the condition 3i   can be implemented with projective operators 
( )

4 4 4A

A
P  , ( )

5 5 5A

A
P  , ( )

6 6 6A

A
P   and ( )

7 7 7A

A
P  , while 3i =  is represented by 

( )
3 3 3A

A
P  . 

Then another target register B is introduced for storing the corresponding calculation results 2i , 7 and 

3i − . The initial state of B is prepared as 0
B

. Taking 2i =  as an example. In this case the state of B needs 

to be turned from 0
B

 into 22 4
BB

= . Obviously, applying 4 0
B

 on B can do the job. But 4 0
B

 is 
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not a unitary operator. More terms need to be added to make it unitary while maintaining the ability of 

turning 0
B

 into 4
B

. The idea of finding other required terms is as follows. For any state orthogonal to 

0
B

, these terms should be able to turn them into a state orthogonal to 4
B

. Also, any two orthogonal states 

should be turned into orthogonal states. There exist many choices satisfying these requirements. A simple 

choice is to select the states among the computational basis  0 , 1 ,..., 7 , e.g., to construct the operator 

( )
2

7

0

4 0 5 1 6 2 7 3 0 4 1 5 2 6 3 7

(4 )mod8 .

B

B B B B B B B B

B
j

U

j j
=

 + + + + + + +

= +
 (13) 

It can be verified that 

( )
7

( ) ( )
2 2

0

,B B

B
j

U U j j I
+

=

= =
 

(14) 

i.e., it is indeed unitary, and 

( )
2 0 4 ,B

B B
U =

 (15) 

i.e., it can indeed turn 0
B

 into 4
B

. When the state of register B is not 0
B

, ( )
2

BU  will turn it into 

something else. But it does not matter to us, because the initial state of B was already taken as 0
B

, so that 

other results will never occur. 

Similarly, for 0i =  and 1i = , following the construction of Eq. (13), the operators on register B can be 

taken as 

7
( ) 2
0

0

(0 )mod8B

B
j

U j j
=

 +  (16) 

and 

7
( ) 2
1

0

(1 )mod8 ,B

B
j

U j j
=

 +
 

(17) 

respectively. They are both unitary, and can turn 0
B

 into 2

B
i  ( 0,1i = ). 

More generally, for any function ( )f i , if 0
B

 is expected to be turned into ( )mod(dim )
B

f i B  (with 

dimB  denoting the dimension of B), the operator on B can be taken as 

(dim ) 1
( )

0

( ( ) )mod(dim ) .
B

B
i B

j

U f i j B j
−

=

 +
 

(18) 

Therefore, for any 3i  , as 0
B

 needs to be turned into 3
B

i − , the corresponding unitary operator 

can be taken as 

7
( )

0

( 3 )mod8 .B
i B

j

U i j j
=

 − +
 

(19) 

The unitary operator for 3i =  that turns 0
B

 into 7
B

 is 
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7
( )
3

0

(7 )mod8 .B

B
j

U j j
=

 +  (20) 

Finally, substituting them into Eq. (1), and we obtain the unitary operation 

7
( ) ( )

0

2 7

2

0 0

7

0

7 7

4 0

( )mod8

3 3 (7 )mod8

( 3 )mod8 .

A B
i i

i

A B
i j

A B
j

A B
i j

U P U

i i i j j

j j

i i i j j

=

= =

=

= =

 

 
=  + 

 
 

 
+  + 

 
 

 
+  − + 

 
 



 



 

 (21) 

Applying it on 0
A B

i  , and we yield 

2 , ( 3)

0 7 ,  ( 3)

3 . ( 3)

A B

A B A B

A B

i i i

U i i i

i i i

  


 =  =


 − 

 (22) 

This completes the implementation of the conditional statement “if 3i   then 2i i , else if 3i =  then 7i , 

else if 3i   then 3i i − ”, and the result is stored in register B. For example, applying Eq. (21) on the 

initial state 4 0
A B
  (i.e., inputting 4i = ) will result in 

( )

( )

2 7

2

0 0

7

0

7 7

4 0

4 0 4 ( )mod8 0

3 3 4 (7 )mod8 0

4 ( 3 )mod8 0

0 0 4 4 4 0 (4 3 0)mod8 0 0 4 1 .

A B A A BB
i j

A A B B
j

A A B B
i j

A A B B A B

U i i i j j

j j

i i i j j

= =

=

= =

 
 =  + 

 
 

 
+  + 

 
 

 
+  − + 

 
 

= + +  + − + = 

 



 

 (23) 

If the result is further required to be stored in register A, then all it needs is simply to apply an operation 

SWAPU  on A B  like the one shown in Eq. (8) (but needed to be expanded to 8×8-dimensional systems) to 

swap the states of registers A and B. 

4. DISCUSSION 

From the above examples, it can be seen that the trick is: the initial state of the control register is not 

prepared as a specific state in the computational basis. On the contrary, it is a superposition of the states 

corresponding to different Boolean conditions (e.g., ( )0 1 2
A A
+ ). With this method, the unitary 

operation U in the form of Eq. (1) actually accomplishes a quantum parallel computation of multiple Boolean 

conditions. Also, even though U contains the projective operator ( )X
iP  on the control register X, the state in X 



282 Guang Ping HE 8 

will not actually be measured and collapsed because all ( )X
iP  form a complete measurement on X. Instead, 

the control register X and the target register Y together experience a unitary transformation. Then the 

calculation results of the if/then/else logic are also stored in Y as a quantum superposition. 

Although this does not necessarily imply quantum speed-up over classical algorithms (it still depends 

on the specific problem to be solved, just like other quantum algorithms), the superposition still leaves more 

freedom for the operations at a later time. This is very useful in both quantum computation and quantum 

cryptography. One of such examples can be found in Ref. [10], whose Eq. (2) is exactly an implementation 

of quantum parallel computation of the if/then/else logic, which enables an attack strategy against a class of 

quantum oblivious transfer protocols. In brief, an honest participant Bob in such a protocol is supposed to 

choose a random classical bit b  and perform a series of operations bT  ( 0,1{ }b ) accordingly. But a 

dishonest Bob can prepare a control qubit ( )0 1 2b = + , then implement the conditional statement “if 

0b =  ( 1b = ) then perform 0T  ( 1T )” at the quantum level. Since the value of b  is not fixed, at a later time, 

rather than using the basis  0 , 1 , Bob can measure b  with another basis, so that he can obtain an extra 

amount of mutual information which is unavailable when using the classical if/then/else operations. 

5. CONCLUSIONS 

In summary, the above examples clearly showed that the if/then/else type of logic in classical 

computers can also be run in quantum computer, and it was already a common practice in quantum logic 

gates, thus the claim in Ref. [5] is refuted. A general method is also provided for constructing the unitary 

transformation required for any if/then/else conditional statement, and it is illustrated how to apply it for 

solving more complicated and valuable problems. 
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