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Abstract. This study investigates the neuroadaptive tracking control problem for a class of strict-feedback non-
linear systems with spatiotemporal constraints. An adaptive neural network-based control system is developed
to alleviate the effects of modeling uncertainties and external disturbances. In particular, the proposed method
ensures that the system tracking error has a predefined performance boundary (spatial constraint). Moreover,
using a novel time-scale transformation method, uncertain nonlinear systems can achieve a prescribed finite-
time convergence to a time-varying scaling function in the pointing position (temporal constraint). Finally, the
efficiency of the proposed method is verified with two simulation examples.
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1. INTRODUCTION

Many practical engineering applications urgently require quick and accurate target control [33, 34]. For
example, a vehicle must be capable of quickly navigating potentially accident-prone situations to avoid casu-
alties. Regarding the tracking problem, the designed missile is expected to quickly track and hit the target;
regarding drone performance, each device must arrive at a fixed location and at a specific time (see Refer-
ences [1, 2]). The traditional asymptotically stable method can no longer meet the current needs. Therefore,
finite-time and fixed-time control methods have been developed, and they have gained considerable popularity
over the past three decades. References [3–14] and the studies cited therein present some representative results
on finite-time and fixed-time control. References [3, 5, 9] focus on the finite-time and fixed-time control of
nonlinear systems under various conditions (e.g., state constraints, dead zone, and input saturation). To avoid
the explosion of complexity problem, a dynamic surface control strategy is introduced in Reference [4]. In
References [8,10,11,13,14], the finite-time and fixed-time control were extended to multi-agent control. Note,
however, that in the results obtained in the above-mentioned literature, the settling time is related to the initial
state and other design parameters. If the system’s initial state is far from equilibrium, the convergence time will
be very long. Design parameters other than the settling time also increase the computational complexity of the
control device. In 2016, Song et al. [15] developed a prescribed time control strategy that effectively solved
the above problems. The basic design idea involves system transformation: that is, find a time-varying function
that can grow to infinity at the expected time and use this function to transform the system into a new system.

More recently, many advanced works have proposed the idea of a prescribed time control algorithm and
applied it to, for example, multi-agent systems, normal form system, and strict-feedback-like system [16–18,
35]. However, the above design method only reflects the dynamic change of the system state from the initial
time to the desired time T , and the movement after time T cannot be known. This strategy is therefore only
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feasible for some practical problems, such as the behavior of a missile that hits a target and the case in which
t ∈∞ is considered in [19,20]. Because most practical systems have unknown parameters and uncertain external
disturbances, it is difficult and expensive to achieve zero steady-state error when the control process is stable.
In practical applications, a control with sufficient steady-state accuracy is acceptable. Therefore, the method
discussed in [16–20] is no longer applicable, so a practical prescribed time control is proposed; this strategy has
been studied by only a few scholars. Zhao et al. [21] applied the practical prescribed time control to normal-
form nonaffine systems. Tan et al. [22] applied it to Euler- Lagrange systems. Cao et al. [23] considered partial
or full state constraints.

Owing to physical conditions, technology, and security, the system state is inevitably spatially constrained
during operation. For example, the operation trajectory of the end joint of an industrial manipulator is generally
limited to the first quadrant of the Cartesian coordinate system. If the spatial constraints are not met, the inertia
matrix will appear singular, affecting industrial production. Similar problems may also arise in various defense
and aerospace systems. Therefore, studying the spatial (state/output) constraints control problem of nonlinear
systems is of practical significance. Nevertheless, developing relevant spatial constraint control algorithms is
challenging. A nonlinear system control algorithm based on a restricted Lyapunov function is proposed in
the literature [27] and ensures that the output state of the system is maintained within a predetermined space
constraint. This scheme is then extended to the strict feedback system [28]. In this method, the state constraint
problem needs to be transformed into the error constraint problem so that it is within the predetermined range
of the state; this is a conservative approach. To solve this problem, the integral-constrained Lyapunov function
method is adopted in the literature [29], which only needs to ensure that the initial value of the state is within
the predetermined range (rather than within the range of its subset). Various other spatial constraint methods
have also been developed at the same time. For example, Ilchmann [30] and Bechlioulis [31] et al. further
analyzed the above results and proposed funnel control and preset performance algorithms, which have received
considerable research attention.

To the best of our knowledge, the neuroadaptive control of strict-feedback nonlinear systems with spa-
tiotemporal constraints, which motivates this research, has not yet been made available. This study makes the
following primary contributions:

• The proposed method allows user-defined performance by ensuring that the distance between agents’
state trajectories and their reference state trajectories is less than the given bounds (spatial constraints).

• It achieves finite-time convergence to the position of a time-varying leader at a user-defined time (tem-
poral constraints).

• In this study, incomplete system modeling and unknown interference problems are fully considered,
and system stability tracking is ensured through the radial basis neural network and scale time-varying
function.

2. PROBLEM FORMULATION AND PRELIMINARIES

2.1. System description

Consider a class of strict feedback nonlinear system described as

ẋ1 = x2 + f1(x1)+d1
...
ẋ j = x j+1 + f j(x̄ j)+d j

...
ẋn = u+ fn(x̄n)+dn

y = x1, j = 2, ...,n−1

(1)
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where x̄i = [x1, ...,xi]
⊤ ∈ Ri(i = 1, ...,n) are system state vectors, f j(x̄ j) ∈ ℜ, j = 2, ...,n is an unknown smooth

nonlinear function, and di ∈ ℜ indicate unknown disturbance. u ∈ ℜ and y ∈ ℜ are control input and output,
respectively.

Remark 1. System (1) represents a large class of nonlinear single-input single-output (SISO) systems.
Furthermore, the electromechanical and flexible crane systems can be regarded as forms of system (1).

The desired trajectory of the tracking signal is defined as xd , which is continuous and differentiable. The
main control objective of this study is to design a neuroadaptive control strategy under spatiotemporal con-
straints such that:

1. the systematic tracking error satisfies spatiotemporal constraints;
2. all the signals in the closed-loop system are bounded.

2.2. Preliminaries

LEMMA 1 [24]. Radial basis function neural networks (RBFNN) can approximate unknown continuous
nonlinear functions F(Z) : ℜq → ℜ with arbitrary precision on a compact set Ω ⊂ ℜq.

F(Z) =W T S(Z)+δ (Z) (2)

where W = [W1,W2, ...,Wn] ∈ Rl is the optimal weight of RBFNN, l is the neural network (NN) node number,
δ (Z) ∈ ℜ is the approximation error, satisfies | δ (Z) |≤ δ̄ , and δ̄ > 0 is a constant. S(Z) ∈ Rl is a known and
bounded basis function, chosen as the Gaussian function form.

Si(Z) = exp[
−(Z − ςi)

T (Z − ςi)

κ2
i

] (3)

where ςi = [ς1,ς2, ...,ςn]
T denotes the center of the receptive field, and κi represents the width of the Gaussian

function.
ASSUMPTION 1 [25]. The desired trajectory xd and its i(i = 1, ...,n)−order derivatives are known, con-

tinuous, and bounded. In addition, the system states are available for control design.
Remark 2. For the condition in which the system state is available under assumption 1, if the system

state cannot be used in the control design, a state observer must be constructed; however, this situation is not
considered in this study.

Definition 1. A time constant T is set in advance so that the system tracking error converges within this T ,
that is, the temporal constraint; an upper bound ζ of the convergence error is set in advance so that it converges
to ζ within the finite time T , that is, the spatial constraints.

3. CONTROL SCHEME

To adjust the settling time of the system, we introduce a time-varying piecewise function as follows:

β (t) =

{
χ(T−t

T )
n
+ζ , 0 ≤ t < T

ζ , t ≥ T
(4)

where T and ζ represent the values of the predefined settlement time and convergence accuracy, respectively.
Remark 3. The temporal constraint value T and the spatial constraint value ζ in the spatiotemporal con-

straints are given in β (t).
Define the system tracking error e as

e = y− xd = x1 − xd (5)
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In order to design the following controller, we transform the tracking error e as follows:

ξ1 = tan(
π

2
e
β
) (6)

ξi = xi −αi−1, i = 2,3, ...,n (7)

where αi−1 is a virtual controller. In this section, the control design is presented via the backstepping method,
which is composed of n steps.

Step 1. It follows from (1), (5), (6), and (7) that

ξ̇1 = (1+ tan2(
π

2
e
β
))

π

2β
(x2 + f1(x1)+d1 −

β̇

β
e) (8)

Note that Π = 1+ tan2(π

2
e
β
)) π

2β
, and from (7), one has

ξ̇1 = Π(ξ2 +α1 + f1(x1)+d1 −
β̇

β
e) (9)

Letting F1 = f1(x1)+d1 − β̇

β
e, and using Lemma 1, a RBFNN is adopted to estimate F1 as:

F1 =W T
1 S1 +δ1 (10)

Substituting (10) into (9) yields
ξ̇1 = Π(ξ2 +α1 +W T

1 S1 +δ1) (11)

then
ξ1ξ̇1 = Πξ1(ξ2 +α1 +W T

1 S1 +δ1) (12)

In view of Young’s inequality

ξ1(W T
1 S1 +δ1)≤| ξ1 | (∥W1 ∥∥ S1 ∥+δ̄1)

≤| ξ1 | (max{∥W1 ∥, δ̄1} · (1+ ∥ S1 ∥))

≤ ξ
2
1 max2{∥W1 ∥, δ̄1} · (1+ ∥ S1 ∥)2 +

1
4

≤ ξ
2
1 Θ1Φ1 +

1
4

(13)

where Θ1 = max2{∥ W1 ∥, δ̄1} and Φ1 = ·(1+ ∥ S1 ∥)2. Consider the following Lyapunov function candidate
as:

V1 =
1
2

ξ
2
1 +

1
2r1

(Θ1 − Θ̂1)
2 (14)

where r1 > 0 is the design parameter. Then, the time derivative of V1 along (12) and (13) can be derived as:

V̇1 ≤ Π(ξ1ξ2 +ξ1α1 +ξ
2
1 Θ1Φ1 +

1
4
)− 1

r1
Θ̃1

˙̂
Θ1 (15)

Then, (15) can be rewritten as:

V̇1 ≤ Π(ξ1ξ2 +ξ1α1 +ξ
2
1 Θ̂1Φ1)+

1
r1

Θ̃1(r1Πξ
2
1 Φ1 − ˙̂

Θ1)+
1
4

(16)
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The virtual controller α1 and adaptive law ˙̂
Θ1 are designed as:

α1 =− 1
Π

k1ξ1 −ξ1Θ̂1Φ1 (17)

˙̂
Θ1 = r1Πξ

2
1 Φ1 −σ1Θ̂1 (18)

where the parameters k1 > 0, r1 > 0, and σ1 > 0 are chosen freely by the designer. Θ̂1 is the estimation of Θ1.

Remark 4. The parameters in the adaptive control law are freely set by the designer. However, in order to
obtain better tracking performance, the designer needs to adjust these parameters.

Substituting (17) and (18) into (16) gives

V̇1 ≤−k1ξ
2
1 +

σ1

r1
Θ̃1Θ̂1 +Πξ1ξ2 +

1
4

(19)

Note that

σ1

r1
Θ̃1Θ̂1 =

σ1

r1
(−Θ̃

2
1 + Θ̃1Θ)

≤− σ1

2r1
Θ̃

2
1 +

σ1

2r1
Θ

2
1

(20)

Then, (19) can be rewritten as:
V̇1 ≤−k1ξ

2
1 − σ1

2r1
Θ̃

2
1 +Πξ1ξ2 +∆1 (21)

where ∆1 =
σ1
2r1

Θ2
1 +

1
4 , and Πξ1ξ2 will be handled in the next step.

Step 2. By calculating (1) and (7), one has

ξ̇2 = ξ3 +α2 + f2(x2)+d2 − α̇1 (22)

Letting F2 = f2(x2)+d2 − α̇1, and using Lemma 1, a RBFNN is adopted to estimate F2 as:

F2 =W T
2 S2 +δ2 (23)

By using Young’s inequality, one has

ξ2(W T
2 S2 +δ2)≤| ξ2 | (∥W2 ∥∥ S2 ∥+δ̄2)

≤| ξ2 | (max{∥W2 ∥, δ̄2} · (1+ ∥ S2 ∥))

≤ ξ
2
2 max2{∥W2 ∥, δ̄2} · (1+ ∥ S2 ∥)2 +

1
4

≤ ξ
2
2 Θ2Φ2 +

1
4

(24)

Further, the Lyapunov function is constructed as follows:

V2 =V1 +
1
2

ξ
2
2 +

1
2r2

(Θ2 − Θ̂2)
2 (25)

then, the time derivative of V2 along (22) and (24) is

V̇2 ≤− k1ξ
2
1 − σ1

2r1
Θ̃

2
1 +∆1 +(ξ2ξ3 +ξ2α2 +ξ

2
2 Θ̂2Φ2

+Πξ1ξ2)+
1
r2

Θ̃2(r2ξ
2
2 Φ2 − ˙̂

Θ2)+
1
4

(26)
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Then, the virtual controller α2 and the adaptive law ˙̂
Θ2 are designed as:

α2 =−k2ξ2 −ξ2Θ̂2Φ2 −Πξ1 (27)

˙̂
Θ2 = r2ξ

2
2 Φ2 −σ2Θ̂2 (28)

where the parameters k2 > 0, r2 > 0, and σ2 > 0 are chosen freely by the designer.

With the help of (27) and (28), we have

V̇2 ≤−k1ξ
2
1 − σ1

2r1
Θ̃

2
1 +∆1 − k2ξ

2
2 +

σ2

r2
Θ̃2Θ̂2 +ξ2ξ3 +

1
4

(29)

Note that
σ2

r2
Θ̃2Θ̂2 ≤− σ2

2r2
Θ̃

2
2 +

σ2

2r2
Θ

2
2 (30)

Then, we obtain
V̇2 ≤−k1ξ

2
1 − k2ξ

2
2 − σ1

2r1
Θ̃

2
1 −

σ2

2r2
Θ̃

2
2 +ξ2ξ3 +∆2 (31)

where, ∆2 =
σ1
2r1

Θ2
1 +

σ2
2r2

Θ2
2 +

1
2 , and ξ2ξ3 will be dealt with in the next step.

Step i (i = 3, ...,n−1). Choosing the Lyapunov function candidate as:

Vi =Vi−1 +
1
2

ξ
2
i +

1
2ri

(Θi − Θ̂i)
2 (32)

Similar to step 2, we can get
αi =−kiξi −ξiΘ̂iΦi −ξi−1 (33)

˙̂
Θi = riξ

2
i Φi −σiΘ̂i (34)

where ki, ri, and σi are positive design constants.

Substituting the values of αi and ˙̂
Θi into the derivative of (32) yields

V̇i ≤−
i

∑
m=1

kmξ
2
m −

i−1

∑
m=1

σm

2rm
Θ̃

2
m +∆i−1 +ξiξi+1 +

σi

ri
Θ̃iΘ̂i +

1
4

(35)

Note that
σi

ri
Θ̃iΘ̂i ≤− σi

2ri
Θ̃

2
i +

σi

2ri
Θ

2
i (36)

then

V̇i ≤−
i

∑
m=1

kmξ
2
m −

i

∑
m=1

σm

2rm
Θ̃

2
m +ξiξi+1 +∆i (37)

where ∆i = ∑
i
m=1

σm
2rm

Θ2
m + i

4 , and ξiξi+1 will be dealt with in the next step.

Step n. According to (1) and (7), one has

ξ̇n = u+ fn(xn)+dn − α̇n−1 (38)

then
ξnξ̇n = ξn(u+ fn(xn)+dn − α̇n−1) (39)

Letting Fn = fn(xn)+dn − α̇n−1, and using Lemma 1, a RBFNN is adopted to estimate Fn as:

Fn =W T
n Sn +δn (40)
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According to Young’s inequality, we have

ξn(W T
n Sn +δn)≤| ξn | (∥Wn ∥∥ Sn ∥+δ̄n)

≤| ξn | (max{∥Wn ∥, δ̄n} · (1+ ∥ Sn ∥))

≤ ξ
2
n max2{∥Wn ∥, δ̄n} · (1+ ∥ Sn ∥)2 +

1
4

≤ ξ
2
n ΘnΦn +

1
4

(41)

Choose the Lyapunov function candidate as:

Vn =Vn−1 +
1
2

ξ
2
n +

1
2rn

(Θn − Θ̂n)
2 (42)

then
V̇n = V̇n−1 +ξnξ̇n −

1
rn

Θ̃n
˙̂
Θn (43)

Substituting (39) and (41) into (43), it follows that

V̇n ≤−
n−1

∑
m=1

kmξ
2
m −

n−1

∑
m=1

σm

2rm
Θ̃

2
m +ξn−1ξn +∆n−1

+ξ
2
n Θ̂nΦn +ξnu+

1
rn

Θ̃n(rnξ
2
n Φn − ˙̂

Θn)+
1
4

(44)

Finally, the actual control input u and adaptive law ˙̂
Θn are designed as:

u =−knξn −ξnΘ̂nΦn −ξn−1 (45)

˙̂
Θn = rnξ

2
n Φn −σnΘ̂n (46)

where kn, rn, and σn are positive design constants.

Substituting the values of u and ˙̂
Θn into (44) yields

V̇n ≤−
n

∑
m=1

kmξ
2
m −

n−1

∑
m=1

σm

2rm
Θ̃

2
m +∆n−1

+
σn

rn
Θ̃nΘ̂n +

1
4

(47)

Note that
σn

rn
Θ̃nΘ̂n ≤− σn

2rn
Θ̃

2
n +

σn

2rn
Θ

2
n (48)

then

Vn ≤−
n

∑
m=1

kmξ
2
m −

n

∑
m=1

σm

2rm
Θ̃

2
m +∆n (49)

where ∆n = ∑
n
m=1

σm
2rm

Θ2
m + n

4 . Letting ϒ = min1≤m≤n{2km,σm} and ∆ = ∆n. Then we have

Vn ≤−ϒV +∆ (50)

Then, the main results of this paper are summarized as the following theorem.
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THEOREM 1. Consider the strict-feedback nonlinear system (1). Suppose that Assumption 1 holds, and if
the adaptive controller (45) is applied, then the following objectives are achieved.

1. The boundedness of all signals is ensured.

2. The systematic tracking error satisfies spatiotemporal constraints.

Proof.

1. We first prove that the boundedness of all signals is ensured. According to (50), we can get Ω1 = {V ||V | ≤
∆

ϒ
}, which means that V remains in a compact set after a finite time T0, and signals ξi and Θ̃ are ultimately

uniformly bounded. In addition, the integral on both sides of (50) can be obtained by V (t) ≤ V (0)+ ∆

ϒ
,

then V ∈ ℓ∞ for any bounded initial condition, which implies ξi ∈ ℓ∞, Θ̃i ∈ ℓ∞, and Θ̂i ∈ ℓ∞. From (17), it
is seen that α1 ∈ ℓ∞, which further implies that αi ∈ ℓ∞. As ξi ∈ ℓ∞ and Θ̂i ∈ ℓ∞, then u ∈ ℓ∞ and ˙̂

Θi ∈ ℓ∞

(i = 1,2, ...,n).

2. According to ξ1 ∈ ℓ∞, we can get −β (t) < e < β (t). Then, it can be seen from (4) that in the interval
0 ≤ t ≤ T , β (t) is a monotonically decreasing function with respect to t, and the tracking error e satisfies
Ω = {e ∈ R :| e |< ζ}. In addition, the size of the interval Ω and the convergent settlement time T are set
in advance.

4. SIMULATION VERIFICATION

In order to further verify the effectiveness of the designed algorithm, this paper selects two examples.

4.1. Mathematical example

Consider the following system: 
ẋ1 = x2 + cos(x1)+d1
ẋ2 = u+ cos(x1x2)+d2
y = x1

(51)

where f1(x1) = cos(x1), f2(x̄2) = cos(x1x2). The initial conditions are x1 = 0.5, x2 = −1. The uncertain
disturbances are chosen as d1 =−0.5exp(−x2

1) and d2 = 0.02cos(x2t). The desired trajectory is xd = 0.5sin(t).
The number of RBFNN neurons is selected as 8. The design parameters are chosen as r1 = r2 = 0.5, σ1 = σ2 =
1, k1 = 5, k2 = 10, T = 4, and ζ = 0.08.

The resulting response curve is shown in Figs. 1–5. Figures 1 and 2 show the system output x1, the desired
trajectory xd , and the tracking error e1. Figures 3–5 show control input u, system states x1 and x2, and adaptive
parameters Θ̂1 and Θ̂2, respectively. It can be seen from Fig. 2 that the designed control scheme makes the
tracking error of the system satisfy spatiotemporal constraints, where the temporal constraint T = 4 and the
spatial constraints ζ = 0.08. This paper further verifies the superiority of the proposed method by comparing
it with reference [26]. As can be seen from Figs. 1–3, the tracking error of the proposed method is smaller and
the convergence rate is faster.
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4.2. Physical example

We chose an actual electromechanical system, and its schematic diagram and system parameters are shown
in References [32]. The system model expression can be expressed as:

ẋ1 = x2 +d1(x1, t)

ẋ2 =
1

J
Kτ

+
mL2

0
3Kτ

+
M0L2

0
Kτ

+
2M0L2

0
5Kτ

(x3 − B0
Kτ

x2)

−
mL0G
2Kτ

+
M0L0G

Kτ

J
Kτ

+
mL2

0
3Kτ

+
M0L2

0
Kτ

+
2M0L2

0
5Kτ

sin(x1)+d2(x2, t)

ẋ3 =
1
L u− KB

L x2 − R
L x3 +d3(x3, t)

y = x1

(52)

where R is the armature resistance, di(xi, t) is the unknown disturbance, L is the armature inductance, J is the
rotor inertia, KB is the back-emf coefficient, m is the link mass, G is the gravity coefficient, V0 is the input
control voltage, M0 is the load mass, L0 is the link length, R0 is the radius of the load, B0 is the coefficient
of viscous friction at the joint, and Kτ is the coefficient that characterizes the electromechanical conversion of
armature current to torque.

Choose the desired trajectory as xd = sin(t). The number of RBFNN neurons is selected as 6. The design
parameters are chosen as r1 = r2 = r3 = 1, σ1 = σ2 = σ3 = 1, k1 = 10, k2 = 150, k3 = 150, T = 5, and ζ = 0.5.

The resulting response curve is shown in Figs. 6–10. Figures 6 and 7 show system output x1, desired
trajectory xd , and tracking error e1. Figures 8–10 show control input u, system states x1, x2 and x3, adaptive
parameters Θ̂1, Θ̂2, and Θ̂3, respectively. It can be seen from Fig. 7 that the designed control scheme makes
the tracking error of the system satisfy spatiotemporal constraints, where the temporal constraint T = 5 and the
spatial constraint ζ = 0.5.
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Fig. 7 – Tracking error e1 curve under different initial
conditions.
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5. CONCLUSION

The proposed method combines an adaptive neural network with a scale-time-varying function so that
the system tracking error satisfies the spatiotemporal constraints. The proposed scale-time-varying function
provides the values of the temporal and spatial constraints in advance. These spatiotemporal constraints were
therefore addressed regardless of the initial state of the system.

In the future, we aim to apply the spatiotemporal constraints to other systems, such as multi-agent systems,
pure feedback systems, and multiple-input multiple-output systems. Another research avenue may involve
applying the proposed method to practical engineering systems.
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