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Abstract. This paper reports an analytical, numerical and scale analysis study of free convective heat 

and mass transfer flows coupled with thermal diffusion effect in a slender vertical porous cavity 

subjected to cooperating lateral temperature and concentration gradients. The top and bottom walls of 

the cavity are assumed to be adiabatic and impermeable to mass transfer. This study aims to analyze 

the different hydrodynamic, thermal and solutal behaviors developed in laminar boundary layer flow 

regime reached at high Rayleigh numbers. Based on the parallel flow approximation, an analytical 

solution of the problem is derived in the extreme case of heat-driven (𝑁 ≪ 1) free convection. The 

obtained analytical results are validated numerically by generating the solutions of the full governing 

differential equations by means of finite-difference method (FDM). To estimate the order of 

magnitudes involved in the boundary layer regime, a scale analysis of the conservation equations is 

performed. The order of magnitudes of boundary layer thickness, Nusselt and Sherwood numbers are 

derived in this study. For all these quantities, the trends predicted by the scaling law theory are found 

to be in good agreement with those of the parallel flow approach. The combined effects of Rayleigh 

and Soret numbers on the boundary layer thickness, flow intensity and heat and mass transfers are 

illustrated graphically for representative values of 𝑁, Le and 𝐴𝑟, and the main results are highlighted 

and discussed. 

Key words: heat and mass transfers, thermal diffusion phenomenon, boundary layer regime, parallel 

flow, scale analysis, numerical study. 

1. INTRODUCTION 

Thermal diffusion, commonly known as Soret effect, is one of the main mass transport phenomena that 

can occur in mixtures of mobile particles. It is a cross-transport process by which solutes can be transported 

in a multicomponent mixture under the effect of the applied temperature gradient [1−2]. This effect has 

aroused the attention of several researchers for a long time, and continues to do so. This interest rose from 

the occurrence of the phenomenon in many engineering applications and scientific systems, such as satellite 

problems, oil extractions, manufacturing of integrated circuits and many others. Details concerning the 

applications of the thermal diffusion in science and industry were given by Platten [3]. 

Experimentally, several efforts have been attempted on this subject despite the complexity of diffusion 

and thermal diffusion processes. It is to note here that, except some experimental tests devoted to analyse 

some specific behaviors [4, 5], most of these studies have addressed the measurement of the thermal 

diffusion coefficients of various multicomponent mixtures [6−9]. To this end, novel methods based on 

Thermogravitational [6], electrochemical impedance spectroscopy [7], thermal lens spectrometry [8] and 

microgravity [9] process have been presented and adopted in these studies. Recent experimental techniques 

used to simulate the thermal diffusion effect in binary and ternary liquid mixtures have been described and 

interpreted in the review conducted by Köhler et al. [10]. 

https://www.doi.org/10.59277/PRA-SER.A.24.4.07
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Despite its relevance and long history, the theoretical basis of the thermal diffusion effect on 

convective heat and mass transfer flows is still under debate. Previously, many theoretical studies [11−14] 

were conducted to investigate the thermal diffusion effect on the onset of the convective flows in porous 

enclosures with different configurations of heat and concentration gradients. All of these studies affirmed 

that the thermal diffusion effect could significantly affect the fluid flow, heat and mass transfer behaviors 

within the studied medium. Afterwards, many authors [15−18] followed similar paths to deal with various 

problems in the field. Er-Raki et al. [15] studied analytically and numerically the thermal diffusion effect on 

double diffusive natural convection in a horizontal Darcy porous enclosure heated and salted from the short 

sides. The study focused on the particular situation for which the rest state is a solution of the problem. Only 

the subcritical convection was found possible for this case and its threshold was determined analytically. 

Gaikwad and Kamble [16] studied theoretically the Soret effect on the onset of double diffusive rotating 

anisotropic convection in a horizontal sparsely packed porous layer. The effect of governing parameters of 

the problem on stationary and oscillatory convection was derived using linear stability theory based on the 

usual normal mode technique. Double diffusive natural convection in a differentially heated wavy cavity 

under thermophoresis (thermal diffusion) effect was studied numerically by Grosan et al. [17]. They showed 

that the effect of thermophoresis could be quite significant in appropriate situations and that the number of 

undulations could essentially modify the heat transfer rate and fluid flow intensity. More recently, Sarma and 

Ahmed [18] investigated the thermal diffusion effect on unsteady MHD free convective flow past a semi-

infinite exponentially accelerated vertical plate in a porous medium. The influence of physical parameters on 

flow and transport characteristics was analyzed with suitable graphs. From the survey, it was observed that 

increasing the Soret number increased both the concentration and velocity fields. 

The present work deals with a theoretical study of the effect of thermal diffusion on the free convection 

of heat and mass transfer in a porous enclosure subjected to cooperating horizontal gradients of temperature 

and concentration. The Darcy’s fluid flow model is adopted in the momentum equation and the Boussinesq 

approximation is employed for the density variation. Thermal and solutal Neumann-type boundary 

conditions are applied on the active walls of the cavity. Parallel flow analytical solution is developed in 

steady state boundary layer regime in the extreme case of heat-driven (𝑁 ≪ 1) natural convection. Scale 

analysis predictions of fluid flow and heat and mass transfer characteristics are also presented and compared 

with those of the parallel flow concept. The article ends by drawing some conclusions on the effects of both 

Rayeligh and Soret numbers on these fields for fixed values of the remaining governing parameters. 

2. PROBLEM FORMULATION 

The physical problem under study, depicted in Fig. 1, consists of a two-dimensional homogeneous, 

isotropic and saturated porous cavity of height 𝐻′ and width 𝐿′, filled with a binary fluid. The top and bottom 

end walls of the enclosure are adiabatic and impermeable to mass transfer while its lateral walls are subject 

to uniform fluxes of heat, 𝑞′, and mass, 𝑗′. We assume here that the fluid saturating the matrix is Newtonian, 

and the flow is laminar, incompressible and obeys the Boussinesq approximation. 

The Darcy’s fluid flow model coupled with the energy and mass equations governing this problem can 

be written in a steady state as [12]:  

∇2ψ = −𝑅𝑇 (
𝜕𝑇

𝜕𝑥
+ 𝑁

𝜕𝑆

𝜕𝑥
) (1) 

∇2𝑇 = 𝑢
𝜕𝑇

𝜕𝑥
+ 𝑣

𝜕𝑇

𝜕𝑦
 (2) 

1

Le
(∇2𝑆 + 𝑁𝑆∇

2𝑇) = 𝑢
𝜕𝑆

𝜕𝑥
+ 𝑣

𝜕𝑆

𝜕𝑦
 (3) 

𝑢 =
𝜕ψ

𝜕𝑦
 ,    𝑣 = −

𝜕ψ

𝜕𝑥
 . (4) 

The appropriate boundary conditions are as follows: 

https://cdnsciencepub.com/doi/abs/10.1139/cjp-2021-0361?af=R#con1
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{
 

 𝑥 = ±
1

2
   ∶         ψ = 0 ,      

𝜕𝑇

𝜕𝑥
= 1 ,      

𝜕𝑆

𝜕𝑥
= 1 − 𝑁𝑆   

𝑦 = ±
𝐴𝑟
2
  ∶       ψ = 0 ,     

𝜕𝑇

𝜕𝑦
= 0 ,     

𝜕𝑆

𝜕𝑦
= 0            

 (5) 

where ψ, 𝑇, 𝑆, 𝑢 and 𝑣 are the dimensionless stream function, temperature, concentration and horizontal and 

vertical components of flow velocity, respectively. In addition to these functions, four other dimensionless 

parameters appear in the governing equations, namely, the Soret number 𝑁𝑆, the thermal Rayleigh number 

𝑅𝑇, the Lewis number Le and the solutal to thermal buoyancy ratio 𝑁, respectively. 

The Nusselt and Sherwood numbers characterizing, respectively, the non-dimensional heat and mass 

transfer rates, across the vertical walls, are given by [12]:  

Nu =
1

𝑇(1/2, 0) − 𝑇(−1/2, 0)
        and        Sh =

1

𝑆(1/2, 0) − 𝑆(−1/2, 0)
 (6) 

 

 

Fig. 1 − Physical configuration and coordinates system. 

3. PROBLEM SOLUTION 

3.1. Analytical solution 

Due to the nonlinear coupling between the equations describing this problem, an exact analytical 

solution remains unavailable. However, in the limit of a shallow cavity (𝐴𝑟 ≫ 1), an approximate solution of 

this equations model can be developed by adopting the following parallel flow assumptions which was 

successfully used in the past by Cormack et al. [19] and by many other authors after that for both fluid and 

porous media [12, 14, 15]: 

ψ(𝑥, 𝑦) ≅ ψ(𝑥) ;       𝑇(𝑥, 𝑦) ≅ 𝐶𝑇𝑦 + θ𝑇(𝑥) ;        𝑆(𝑥, 𝑦) ≅ 𝐶𝑆𝑦 + θ𝑆(𝑥) (7) 

where 𝐶𝑇 and 𝐶𝑆 are respectively unknown vertical temperature and concentration gradients. They can be 

determined by considering zero heat and mass transfers across any horizontal section of the enclosure [20]: 

    ∫ (
∂ψ

∂𝑥
𝑇 +

𝜕𝑇

𝜕𝑦
)d𝑥 = 0

1/2

−1/2

       and      ∫ (Le
𝜕ψ

𝜕𝑥
𝑆 +

𝜕𝑆

𝜕𝑦
+ 𝑁𝑆

𝜕𝑇

𝜕𝑦
)d𝑥 = 0

1/2

−1/2

  (8) 

By introducing the approximations of equation (7) into governing equations of the problem, a system 

of classical differential equations is obtained. The boundary layer analytical solution of the resulting system 
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of equations with corresponding boundary conditions is given, at sufficiently small values of thermal to 

solutal buoyancy ratio (𝑁 ≪ 1), as follows: 

ψ(𝑥) =
1

𝐶𝑇
(1 − 𝑒√

𝑅𝑇𝐶𝑇(|𝑥|−
1
2
)
) (9) 

𝑇(𝑥, 𝑦) = 𝐶𝑇𝑦 +
1

√𝑅𝑇𝐶𝑇

|𝑥|

𝑥
𝑒√

𝑅𝑇𝐶𝑇(|𝑥|−
1
2
)
 (10) 

𝑆(𝑥, 𝑦) = 𝐶𝑆𝑦 + (1 −
Le𝐶𝑆
𝐶𝑇

) 𝑥 +
1

√𝑅𝑇𝐶𝑇
(
Le𝐶𝑆
𝐶𝑇

−𝑁𝑆)
|𝑥|

𝑥
𝑒√

𝑅𝑇𝐶𝑇(|𝑥|−
1
2
)
 (11) 

where 𝐶𝑇 and 𝐶𝑆 represent the steady-state vertical temperature and concentration gradients, respectively. 

They can be expressed by computing the integrals of Equation (8), which leads to: 

𝐶𝑇 ≅
1

√𝑅𝑇
5

 (12) 

𝐶𝑆 ≅
Le𝐶𝑇(√𝑅𝑇𝐶𝑇 − 2) − 𝑁𝑆𝐶𝑇(Le + 𝐶𝑇

2√𝑅𝑇𝐶𝑇)

(𝐶𝑇
2 + Le2)√𝑅𝑇𝐶𝑇 − 3Le

2
 (13) 

Based on the criterion of horizontal velocities ratio at the boundary layer’s edge, the boundary layer 

thickness, denoted by δ𝑥, can be approximately expressed as follows: 

δ𝑥 ≅
1

√𝑅𝑇𝐶𝑇
≅

1

𝑅𝑇
2/5

 (14) 

The approximate expressions of Nusselt and Sherwood numbers can be given in boundary layer regime 

(𝑅𝑇 ≫ 1) as follows: 

Nu ≅
𝑅𝑇

2/5

2
            and            Sh ≅

𝑅𝑇
2/5

(1 −
Le𝐶𝑆
𝐶𝑇

)𝑅𝑇
2/5 + 2(

Le𝐶𝑆
𝐶𝑇

−𝑁𝑆)
 (15) 

3.2. Numerical solution 

To validate the parallel flow approximation adopted in the previous section, a numerical test allowing 

the resolution of the basic equations is carried out. The full equations (1)−(4) are solved using a classical 

central difference method. The iterative procedure is performed using the alternate direction implicit method 

(A.D.I.) for Eqs. (1), (2) and (3). In order to capture accurately the boundary layer profiles, a non-uniform 

grid, finer in the vicinity of the walls, is adopted. The computations reported in this paper were performed 

with a grid of 81×201 for 𝐴𝑟 varying within the range 8 ≤ 𝐴𝑟 ≤ 12. To check the convergence of the 

numerical code, the criterion  ∑ ∑ |Γ𝑖,𝑗
𝑛+1 − Γ𝑖,𝑗

𝑛 |/∑ ∑ |Γ𝑖,𝑗
𝑛+1|𝑗𝑖𝑗𝑖 ≤ 10−5 is adopted. 

3.3. Scale analysis solution 

The aim of this section is to provide an approach based on scale analysis to estimate the orders of 

magnitude of the physical properties of the flowing fluid in the limiting case where the flow is dominated by 

thermal buoyancy forces (𝑁 ≪ 1). This is the case where the force convection heat transfer is the dominant 

regime, and the density gradients are mainly induced by the temperature gradient due to lateral heating. In 

this analysis, we will specifically focus our attention on high Rayleigh number natural convection for which 

boundary layer type behaviors are observed for velocity, temperature and concentration profiles. 

For this purpose, we need to rewrite our mathematical formulation in terms of velocities as follows:  

𝜕𝑢

𝜕𝑥
+
𝜕𝑣

𝜕𝑦
= 0 (16) 
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𝜕𝑢

𝜕𝑦
−
𝜕𝑣

𝜕𝑥
= −𝑅𝑇 (

𝜕𝑇

𝜕𝑥
+ 𝑁

𝜕𝑆

𝜕𝑥
) (17) 

(
𝜕2𝑇

𝜕𝑥2
+
𝜕2𝑇

𝜕𝑦2
) = 𝑢

𝜕𝑇

𝜕𝑥
+ 𝑣

𝜕𝑇

𝜕𝑦
 (18) 

1

Le
(
𝜕2𝑆

𝜕𝑥2
+
𝜕2𝑆

𝜕𝑦2
) +

𝑁𝑆
Le
(
𝜕2𝑇

𝜕𝑥2
+
𝜕2𝑇

𝜕𝑦2
) = 𝑢

𝜕𝑆

𝜕𝑥
+ 𝑣

𝜕𝑆

𝜕𝑦
 (19) 

which is subjected to the following boundary conditions: 

𝑥 = ±
1

2
   ∶         𝑢 = 𝑣 = 0 ,     

𝜕𝑇

𝜕𝑥
= 1 ,      

𝜕𝑆

𝜕𝑥
= 1 − 𝑁𝑆 (20) 

𝑦 = ±
𝐴𝑟
2
  ∶         𝑢 = 𝑣 = 0 ,     

𝜕𝑇

𝜕𝑦
= 0 ,     

𝜕𝑆

𝜕𝑦
= 0 .            (21) 

According to Equations (17) and (18), the balances in terms of order of magnitude of the conservation 

equations momentum and energy in the vertical boundary region of thickness δ𝑥 are given respectively by: 

δ𝑣

δ𝑥
 ~ 𝑅𝑇

δ𝑇

δ𝑥
 (22) 

𝐶𝑇δ𝑣 ~ 
δ𝑇

δ𝑥2
  (23) 

where δ𝑣 and δ𝑇 are the vertical velocity and temperature boundary layers thicknesses, respectively, and 𝐶𝑇 

is the vertical gradient of the temperature in the enclosure (see Eq. (8)). 

The order of magnitude scale relative to Equation (8) yields: 

𝐶𝑇 ~ δ𝑣 δ𝑇δ𝑥 (24) 

In scaling terms, the thermal boundary condition imposed along the vertical boundaries (Eq. (20) implies:  

δ𝑇

δ𝑥
 ~ 1 (25) 

The set of equations (22), (23), (24) and (25) can easily be solved to deduce the unknown scales for δ𝑥, δ𝑣, 

δ𝑇 and 𝐶𝑇, which yields: 

δ𝑥 ~ 𝑅𝑇
−2/5 ;       δ𝑣 ~ 𝑅𝑇

3/5 ;      δ𝑇 ~ 𝑅𝑇
−2/5 ;     𝐶𝑇 ~ 𝑅𝑇

−1/5 (26) 

The heat transfer rate is then scaled as: 

Nu ~ 
1

δ𝑇
 ~ 𝑅𝑇

2/5 (27) 

At sufficiently high thermal Rayleigh numbers, a boundary layer, of thickness δ𝑦, develops along the 

top and bottom walls of the cavity. Let δ𝑢 and δ𝑇̅̅̅̅  be the horizontal velocity and temperature changes across 

this layer. The orders of magnitude deduced form the conservation equations of mass, momentum and energy 

in a horizontal region of thickness δ𝑦 are given respectively by: 

δ𝑢δ𝑦 ~ δ𝑣δ𝑥 (28) 

δ𝑢

δ𝑦
 ~ 𝑅𝑇δ𝑇 (29) 

δ𝑇̅̅̅̅

δ𝑦2
 ~ δ𝑢δ𝑇 (30) 
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Upon combining the results of (26) with the equations (28), (29) and (30), we find that: 

δ𝑦 ~ 𝑅𝑇
−1/5 ;        δ𝑢 ~ 𝑅𝑇

2/5 ;         δ𝑇̅̅̅̅  ~ 𝑅𝑇
−2/5 (31) 

Referring to Eq. (19), the scale of concentration changes across the vertical boundary layer depends on the 

Lewis number Le (ratio of molecular heat to mass diffusivity). It is therefore necessary to consider separately 

whether the mass transfer is ruled by convection (Le ≫ 1) or by diffusion (Le ≪ 1). 

3.3.1. Convective mass transfer (𝐋𝐞 ≫ 𝟏) 

It is relevant to note here that in the absence of thermal diffusion effect (𝑁𝑆 = 0), the vertical 

concentration boundary layer has the same thickness as both the hydrodynamic and the thermal ones 

(δ𝑆 ~ δ𝑇 ~ δ𝑥). When taking the thermal diffusion effect into account, the boundary layer thickness of the 

concentration profile is found to be proportional to the hydrodynamic one (δ𝑆 ~ (1 − 𝑁𝑆)δ𝑥) and the 

coefficient of proportionality is a function of the Soret number, 𝑁𝑆. 

In scaling terms, the solutal boundary conditions imposed along the vertical sides, Eq. (20), yields: 

δ𝑆

δ𝑥
 ~ 1 − 𝑁𝑆 (32) 

In a vertical boundary layer of thickness δ𝑥, the conservation equation of species Eq. (19) allows us to write: 

𝐶𝑆δ𝑣 ~ (
1

Le

δ𝑆

δ𝑥2
) ;     (

𝑁𝑆
Le

δ𝑇

δ𝑥2
)  (33) 

with 𝐶𝑆 being the vertical concentration gradient. 

The three terms of the equation (33) are therefore balanced. To determine the appropriate order of 

magnitude of 𝐶𝑆, one must discuss the two extreme cases of large and small values of the Soret number, 𝑁𝑆. 

For sufficiently large values of 𝑁𝑆 (𝑁𝑆 ≫ 1) , the equation (33) reduces to:  

𝐶𝑆δ𝑣 ~ (
𝑁𝑆
Le

δ𝑇

δ𝑥2
)  (34) 

Using Eqs. (26) and (34), we obtain: 

𝐶𝑆 ~ 
𝑁𝑆
Le
𝑅𝑇

−1/5 (35) 

For sufficiently small values of 𝑁𝑆 (𝑁𝑆 ≪ 1), the equation (33) gives: 

𝐶𝑆δ𝑣 ~ 
1

Le

δ𝑆

δ𝑥2
  (36) 

Upon combining the equations (26), (32) and (36), we obtain: 

𝐶𝑆 ~ 
1

Le
𝑅𝑇

−1/5 (37) 

For both cases, the scale of the Sherwood number is such that: 

Sh ~ 
1

δ𝑆
 ~  

1

1 − 𝑁𝑆
𝑅𝑇

2/5

 (38) 

3.3.2. Diffusive mass transfer (𝐋𝐞 ≪ 𝟏) 

For this situation, no boundary layer behavior is observed for the concentration profile. This result can 

be deducted from the iso-concentrations presented in Fig. 2 where the contour lines are found practically 

parallel to the long vertical walls. The mass transfer is then ruled essentially by diffusion. 

The horizontal concentration drop over the width of the cavity is given in this case as follows:  

δ𝑆 ~  1 − 2𝑁𝑆𝑅𝑇
−2/5 (39) 
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The transfer of mass is that of pure diffusion and the Sherwood number is scaled as: 

Sh ~  
𝑅𝑇

2/5

𝑅𝑇
2/5−2𝑁𝑆

 , (40) 

which corresponds, in the absence of thermal diffusion effect, to a Sherwood number of O(1) or Sh ~ 1. 
 

 

 

Fig. 2 − Isotherms (a) and iso-concentrations (b) contours obtained for 𝑅𝑇 = 10
3, 

𝑁 = 10−4, Le = 10−3, 𝑁𝑆 = 0.4 and 𝐴𝑟 = 8. 

4. RESULTS AND DISCUSSION 

In this section, the most interesting results for both analytical and numerical methods are reported and 

discussed, and the combined effects of the governing parameters on the fluid flow properties and heat and 

mass transfer characteristics are illustrated and analyzed. 

Aiming to render the problem amenable to a very helpful parametric study, an analytical solution of the 

governing equations is proposed based on the parallel flow approximation valid in the case of a shallow 

cavity. To confirm the validity of this approach, the study is completed by a numerical simulation of the full 

governing equations of the problem based on a second-order finite difference scheme. Typical numerical 

results, in terms of streamlines (a), isotherms (b) and iso-concentrations (c), are presented in Fig. 3 for  

NS = 0.5, Le = 3, N = 10–3, RT = 10 and Ar = 8. The fundamental character of the parallel flow approach is 

well illustrated in this figure. Thus, it can be seen from this figure that the velocity is parallel to the long 

boundaries in the core region of the cavity and the temperature and concentration profiles are linearly 

stratified in the vertical direction. Taken together, these findings strongly confirm the reliability and validity 

of the parallel flow assumptions adopted in this study to develop an analytical solution for the problem. 

Given its specific physical characteristics, attention is focused on the boundary layer regime which is 

found to exist for sufficiently large values of Rayleigh number. The scope of this study is restricted to the 

identification and analysis of boundary layer behaviors developed by double diffusion in the extreme case of 

heat-driven (𝑁 ≪ 1) natural convection. We limit ourselves here to highlighting high Rayleigh number 

natural convection for which boundary layer type behaviors are observed for velocity, temperature and 

concentration profiles. This specific behavior can be clearly seen in Fig. 4 which displays the horizontal 

profiles of temperature, concentration and velocity at the mid-height of the enclosure for a given 

combination of governing parameters. Both analytical and numerical results are presented and the agreement 

between the two predictions can be clearly observed. It is obvious from the plots depicted in this figure that 

the horizontal gradients of temperature, concentration and velocity are nearly zero outside the vertical 

boundary layers (the boundary layer regime character). 
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Fig. 3 − Streamlines (a), isotherms (b) and iso-concentrations (c) contours obtained for 𝑁𝑆 = 0.5, 

Le = 3, 𝑁 = 10−3, 𝑅𝑇 = 10 and 𝐴𝑟 = 8. 

 

 

Fig. 4 − Horizontal profiles of temperature, concentration and velocity at the mid-height of the 

enclosure for 𝑅𝑇 = 10
3, 𝑁 = 10−4, Le = 2, 𝑁𝑆 = 0.4 and 𝐴𝑟 = 8.  

After having validated the parallel flow results numerically, let us now highlight these results and 

compare them with those of scale analysis. In view of the approximate solutions developed above, it clearly 

appears that there is excellent agreement between the expressions derived on the basis of the parallel flow 

concept and those obtained by scale analysis. More specifically and referring to equations (12) to (15) and 

equations (26) and (27), the vertical temperature gradient, 𝐶𝑇, the boundary layer thickness, δ𝑥, and the 

Nusselt number, Nu, are found for both theories to be varied as 𝑅𝑇
−1/5, 𝑅𝑇

−2/5 and 𝑅𝑇
2/5, respectively. As 

for the concentration profile, both approaches also showed, with the same tendency, that the scale of 

concentration changes across the vertical boundary layer depends on the Lewis, Le, and Soret, NS, numbers. 

In this regard and in order to estimate the order of magnitude of the Sherwood number, representing this 

profile, the two extreme cases of convective (Le ≫ 1) and diffusive (Le ≪ 1) mass transfer are separately 

examined and the corresponding predictions are reported. As can be seen from equations (15) and (40), the 

degree of agreement of the analytical predictions and scale analysis is seen to be good. 

By comparing the results of equations (26) and (31), it can be clearly seen that the horizontal boundary 

layer is thicker than the vertical one. These equations also allow us to deduce that the velocity changes 

through the vertical boundary layer are larger than those observed in the horizontal one. Another significant 

result that emerges from this analysis is that the temperature changes through both the horizontal and vertical 

boundary layers have the same amplitude, both vary as 𝑅𝑇
−2/5. 
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We now turn our attention to the effect of 𝑅𝑇 on the fluid flow and heat and mass transfer 

characteristics inside the cavity for given values of the pertinent flow parameters 𝑁, Le and 𝑁𝑆. The 

variations with 𝑅𝑇 of the boundary layer thickness, δ𝑥, the stream function at the center of the enclosure, 𝜓0, 

the Nusselt, Nu, and Sherwood, Sh, numbers are illustrated, respectively, in Figs. (5)−(8) for 𝑁 = 10−3 

(heat-driven flow), Le = 3 and different values of Soret number, 𝑁𝑆. Firstly, it is clearly seen from these 

figures that the parallel flow predictions represented by solid lines are in excellent agreement with the fully 

numerical results depicted by dotted lines, thus demonstrating the validity of the parallel flow approximation 

adopted in this study. Likewise, and as anticipated, these plots show that the boundary layer analytical results 

agreed well with the parallel flow ones for relatively high values of 𝑅𝑇, which justifies the simplifications 

performed above to find a solution to the problem in boundary layer regime. The critical values of 𝑅𝑇 

beyond which the boundary layer regime is reached differ from one characteristic function to another and are 

independent of the Soret parameter. Furthermore, these figures also illustrate that as Rayleigh number 

increases, the Nusselt number and stream function increase as well, while the vertical boundary layer 

thickness decreases monotonically. These trends are in agreement with the analytical predictions, where Nu, 

𝜓0 and δ𝑥 varied according to 𝑅𝑇
2/5, 𝑅𝑇

1/5 and 𝑅𝑇
−2/5, respectively. In contrast, and as expected, the mass 

transfer, characterized by Sherwood number and depicted in Fig. 8, is seen to be strongly affected by the 

Soret number. It was found positive in both cases 𝑁𝑆 = −5 and 𝑁𝑆 = 0 (without Soret effect) and negative 

for 𝑁𝑆 = 5, which is consistent with equations (15) and (38). These results prove that the Soret effect plays a 

significant role in concentration diffusion between the vertical walls of the medium. Another result obtained 

from this study is that, at low Rayleigh numbers, heat transfer is dominated by his pure diffusive regime 

(𝜓0 ≅ 0,Nu ≅ 1) regardless of the Soret effect. 

 

 
Fig. 5 − Effect of 𝑅𝑇 on δ𝑥 for 𝑁 = 10−3, Le = 3, 

 𝐴𝑟 = 8 and different values of 𝑁𝑆. 

 
Fig. 6 − Effect of 𝑅𝑇 on ψ0 for 𝑁 = 10−3, Le = 3, 

 𝐴𝑟 = 8 and different values of 𝑁𝑆. 

 

 
Fig. 7 − Effect of 𝑅𝑇 on Nu for 𝑁 = 10−3, Le = 3, 

 𝐴𝑟 = 8 and different values of 𝑁𝑆. 

 
Fig. 8 − Effect of 𝑅𝑇 on Sh for 𝑁 = 10−3, Le = 3, 

 𝐴𝑟 = 8 and different values of 𝑁𝑆. 
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5. CONCLUSION 

Thermal diffusion effect on free convective heat and mass transfer within a vertical porous enclosure 

submitted to horizontal temperature and concentration gradients is studied analytically and numerically. The 

study is mainly devoted to the analysis of fluid flow, heat and mass transfer processes in boundary layer 

convective flows within a cavity saturated by a binary mixture. Of particular interest of this study is to 

examine the different boundary layer behaviors developed in the limiting case where the flow is dominated 

by thermal buoyancy forces (𝑁 ≪ 1). An approximate analytical solution of the problem, valid for shallow 

enclosures, is derived on the basis of the parallel flow assumptions and validated numerically by solving the 

full governing equations. In this paper is also presented a scale analysis development used to estimate the 

fluid flow and heat and mass transfer characteristics order of magnitudes. A good agreement between the 

scale analysis results and those of parallel flow assumptions was found. Relevant to this study, results 

showed that the vertical hydrodynamic and thermal boundary layers thicknesses are equivalent 

(δ𝑥~δ𝑇~𝑅𝑇
−2/5) and that the Nusselt number varies as 𝑅𝑇

2/5 regardless of the Soret number, 𝑁𝑆. The mass 

transfer characteristics inside the enclosure, on the contrary, are found to be strongly affected by the thermal 

diffusion effect. Indeed, the concentration boundary layer thickness and Sherwood number were found to 

vary, respectively, as δ𝑆 ~ (1 − 𝑁𝑆)𝑅𝑇
−2/5 and Sh ~

1

1−𝑁𝑆
𝑅𝑇

2/5 for Le ≫ 1 and δ𝑆 ~1 − 2𝑁𝑆𝑅𝑇
−2/5  and  

Sh ~
𝑅𝑇

2/5

𝑅𝑇
2/5−2𝑁𝑆

 for Le ≪ 1. For this last case, it was also found that no boundary layer behavior is observed 

for the concentration profile and, therefore, mass transfer is mainly governed by diffusion. 
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