ESTIMATING \(\text{PROB}\{Y < X\} \) IN THE CASE OF THE POWER DISTRIBUTION

Ion VLADIMIRESCU, Adrian IAŞINSCHI

Fac. Mathematics-Informatics, University of Craiova
Corresponding author: Ion VLADIMIRESCU, E-mail: vladi@central.ucv.ro

We consider the problem of estimating the probability \(\text{Prob}\{Y < X\} \), where \(X \) and \(Y \) are two independent random variables having power distributions. We obtain a parametric estimator \(\hat{R}_n \) and a non-parametric estimator \(\overline{R}_n \) for the quantity \(R = \text{Prob}\{Y < X\} \). We compare the performances of these two estimators using Monte Carlo techniques and we find that the procedure used for the estimates is satisfactory.

AMS 2000 Subject Classification: 62N05, 62N02, 62G05.
Key words: stress-strength model; mechanical reliability; parametric and non-parametric estimates; Monte Carlo simulation.

1. INTRODUCTION

The problem of estimating \(R = \text{Prob}\{Y < X\} \) where \(X \) and \(Y \) are independent random variables has been studied for the exponential distribution by Kelley et al. [3], for the double exponential distribution in Awad and Fayoumi [2], and for the Lučenč distribution [5]. We shall consider the power distribution \(\pi_{b,\delta} \) with parameters \(b, \delta > 0 \), that is the distribution on \(\mathbb{R} \) with the probability density function:

\[
\rho(x;b,\delta) = \delta b^{-\delta} x^{\delta-1} 1_{(0,b)}(x), \quad x \in \mathbb{R}
\]

Let \(X \) and \(Y \) be two independent random variables such that \(X \sim \pi_{b_1,\delta_1} \), \(Y \sim \pi_{b_2,\delta_2} \). We can think of \(X \) as the strength of a mechanical system being subjected to a stress \(Y \). The purpose of this paper is to give a measure of the mechanical reliability of the system, that is estimating \(\text{Prob}\{Y < X\} \) with \(\delta_1, \delta_2 \) known and \(b_1, b_2 \) unknown.

2. ESTIMATING THE RELIABILITY

Since

\[
\text{Prob}(Y < X \mid X) = \begin{cases} \left(\frac{X}{b_2} \right)^{\delta_2}, & \text{when } 0 < X < b_2, \\ 1, & \text{when } X \geq b_2 \end{cases}
\]

and

\[
\text{Prob}(Y < X) = E(\text{Prob}(Y < X \mid X))
\]

we obtain
Ion Vladimirescu and Adrian Iaşinschi

\[
\text{Prob}(Y < X) = \int_0^\infty \text{Prob}(Y < X | X = x)p(x; b_1, \delta_1)dx = \begin{cases}
\int_0^{b_1} \frac{x^{\delta_2}}{b_1^{\delta_2}} \delta_1 b_1^{-\delta_1} x^{\delta_1 - 1} dx, & \text{if } b_1 \leq b_2, \\
\int_0^{b_2} \frac{x^{\delta_2}}{b_2^{\delta_2}} \delta_1 b_2^{-\delta_1} x^{\delta_1 - 1} dx + \int_{b_1}^{b_2} \frac{x^{\delta_2}}{b_2^{\delta_2}} \delta_1 b_1^{-\delta_1} x^{\delta_1 - 1} dx, & \text{if } b_1 > b_2
\end{cases}
\]

Let \(t = \frac{b_1}{b_2} \). Then we define

\[
f(t) = \text{Prob}(Y < X) = \begin{cases}
t^{\delta_2} \frac{\delta_1}{\delta_1 + \delta_2}, & \text{if } 0 < t \leq 1, \\
1 - t^{-\delta_2} \frac{\delta_2}{\delta_1 + \delta_2}, & \text{if } t > 1
\end{cases}
\]

The function \(f(t) \) is obviously continuous and differentiable on \((0, \infty)\), increasing and convex on \((0,1)\) and non-convex on \((1, \infty)\), as we can see in the following:

\[
f'(t) = \begin{cases}
\frac{\delta_1 \delta_2}{\delta_1 + \delta_2} t^{\delta_2 - 1}, & \text{if } 0 < t \leq 1, \\
\frac{\delta_1 \delta_2}{\delta_1 + \delta_2} (1 - t)^{-\delta_2 - 1}, & \text{if } t > 1,
\end{cases} \quad f''(t) = \begin{cases}
\frac{\delta_1 \delta_2 (\delta_2 - 1)}{\delta_1 + \delta_2} t^{\delta_2 - 2}, & \text{if } 0 < t \leq 1, \\
\frac{-\delta_1 \delta_2 (\delta_1 + 1)}{\delta_1 + \delta_2} t^{-\delta_2 - 2}, & \text{if } t > 1
\end{cases}
\]

The graph of \(f \) has the following appearance:

For fixed values of the parameters \(\delta_1, \delta_2 \) we can obtain the value of \(t \) necessary to achieve a reliability value of 0.95, or 0.05, specifically \(t_{0.95} = 2.9240 \), \(t_{0.05} = 0.0444 \), for \(\delta_1 = 1.5, \delta_2 = 0.5 \). In the case \(\delta_1 = \delta_2 \) we have \(t_{1-\alpha} = \frac{1}{t_{\alpha}} \).

3. ESTIMATION OF \(R = \text{Prob}(Y < X) \)

Remark. Let \(Z \sim \pi_{b, \delta} \) and \(z_1, \ldots, z_n \) be a random sample from \(Z \). Since \(E(Z) = \frac{b \delta}{\delta + 1} \), for \(\delta > 0 \) known, with the method of moments we find that
is an estimate for the parameter b.

Obviously, $\hat{b}_n = \varphi(z_n)$, where $\varphi:(0,\infty) \to (0,\infty), \varphi(t) = \frac{1+\delta}{\delta} t$, is a differentiable function. Then, (see [4], pg. 119), it follows that

$$\hat{b}_n \xrightarrow{a.s.} b, \text{ as } n \to \infty \quad (2)$$

Now let x_1,\ldots,x_n be a random sample from X and y_1,\ldots,y_n a random sample from Y. We assume that the samples are independent. Taking into account the fact that

$$\frac{1}{\delta_1} < \frac{1}{\delta_2} \quad (3)$$

and using the method of moments, we obtain that

$$\hat{b}_{1,n} = \frac{1+\delta_1}{\delta_1} \bar{x}_n \quad \text{and} \quad \hat{b}_{2,n} = \frac{1+\delta_2}{\delta_2} \bar{y}_n$$

are estimates for the parameters b_1 and b_2.

From (2) it follows that

$$\hat{b}_{1,n} \xrightarrow{a.s.} b_1 \quad \text{and} \quad \hat{b}_{2,n} \xrightarrow{a.s.} b_2 \quad \text{as } n \to \infty.$$

Then,

$$\frac{\hat{b}_{1,n}}{\hat{b}_{2,n}} \xrightarrow{a.s.} \frac{b_1}{b_2}, \text{ as } n \to \infty \quad (3)$$

Since f is continuous, from (3) we get

$$\hat{R}_n \overset{\text{def}}{=} f\left(\frac{\hat{b}_{1,n}}{\hat{b}_{2,n}}\right) \xrightarrow{a.s.} f\left(\frac{b_1}{b_2}\right) \text{ as } n \to \infty. \quad (4)$$

Therefore, for n large enough,

$$f\left(\frac{b_1}{b_2}\right) = \hat{R}_n,$$

that is

$$\hat{R}_n = f\left(\frac{\hat{b}_{1,n}}{\hat{b}_{2,n}}\right) = \begin{cases} \frac{\delta_1}{\delta_1 + \delta_2} \left(\frac{\hat{b}_{1,n}}{\hat{b}_{2,n}}\right)^{\delta_2}, & \text{if } \hat{b}_{1,n} \leq \hat{b}_{2,n} \quad (\text{if } \hat{r}_n \leq 1) \\ \frac{\delta_1}{\delta_1 + \delta_2} \left(\frac{\hat{b}_{1,n}}{\hat{b}_{2,n}}\right)^{-\delta_1}, & \text{if } \hat{b}_{1,n} > \hat{b}_{2,n} \quad (\text{if } \hat{r}_n > 1) \end{cases}$$

where $\hat{r}_n = \frac{\hat{b}_{1,n}}{\hat{b}_{2,n}}$, is an estimate for $R = f\left(\frac{b_1}{b_2}\right) = \text{Prob}(Y < X)$.

Estimating Prob $[Y<X]$ in the case of the power distribution
4. SIMULATION STUDY

In this section we will consider, besides the parametric estimator \(\hat{R}_n \), defined in the preceding section, a non-parametric estimator (see [5]), defined as follows:

\[
\bar{R}_n = \frac{\text{card}\{(X_i, Y_j) \mid Y_j < X_i, \ 1 \leq i, j \leq n\}}{n^2}
\]

We will compare the mean bias (MB) and mean square error (MSE) for the two estimators. For an estimator \(R \) we define the two above quantities by means of the following formulas:

\[
\text{MB}(R) = \frac{1}{N} \sum_{i=1}^{N} (R(r_i; \delta_1, \delta_2) - R(r_i; \delta_i, \delta_i))
\]

\[
\text{MSE}(R) = \frac{1}{N} \sum_{i=1}^{N} (R(r_i; \delta_1, \delta_2) - R(r_i; \delta_i, \delta_i))^2
\]

where \(N \) represents the number of experiments, in our case estimating \(R \).

Random samples from \(X \sim \pi_{b_1, \delta_1} \), \(Y \sim \pi_{b_2, \delta_2} \) were generated, with \((b_1, b_2) \in \{(3,4), (3,6), (3,10), (3,10)\}\) and \((\delta_1, \delta_2) \in \{(0.5,0.5), (0.5,1.5), (0.5,5), (0.5,10)\}\). In order to obtain the MB and MSE the experiment was repeated \(N = 1000 \) times. The results can be obtained, on request, from the authors. The simulation showed that:

1) \(\hat{R}_n \) and \(\bar{R}_n \) estimate \(R \) with errors of the \(10^{-2} \) order in the worse case, that is when \(b_1 = b_2 \).

According to the values obtained for the MSE, \(\hat{R}_n \) is superior. Also we noticed that MSE appears to decrease exponentially when the sample size increases, as in the following plots (MSE versus sample size):
2) Generally, \hat{R}_n underestimates R, as in the next plots (MB versus sample size):
3) $MSE(\hat{R}_n)$ increases when $r = \frac{b_1}{b_2}$ is approaching 1, as it can be observed in the next plot (MSE versus r):

![Plot showing MSE vs r]

We conclude that both estimators appear to work well, with an advantage for the parametric estimator \hat{R}_n.

Acknowledgement. We would like to express our gratitude to Prof. Dr. Viorel Gh. Voda for his useful observations and suggestions.

REFERENCES

Received July 28, 2004